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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-20

THE ANALYSIS AND DESIGN OF CONTINUOUS AND
SAMPLED-DATA FEEDBACK CONTROL SYSTEMS
WITH A SATURATION TYPE NONLINEARITY?

By Stanley Francis Schmidt
SUMMARY

The problem studied in this investigation is how to design and
analyze feedback control systems in which a saturation type nonlinearity,

or limiter, occurs on the input to the controlled system, or "plant.

The plant is assumed to have one input and one output and to be describ-
able by linear differential equations with constant coefficients. The
scopc of the investigation covers plants whose trancfer functions are of
first to fourth order.

As a result of the assumption of linearity and the fact that limit-
ing has no effect for small signal inputs, the feedback control system
can be designed by the use of conventional, linear feedback control
theory for the small input signal range. The problem then becomes how
one can analyze the response of the system for large signal inputs which
cause saturailion and how to design compensating nonlinear functions
which will improve the response should the analysis show this to be
necessary.

The root locus and the switch time methods are used in this
investigation for solution of the problem. The application of the root
locus method is conventional with the exception that the limiter is
treated as a device whose equivalent gain decreases as its input
increases. It is shown that a root locus graph with respect to the
limiter gain gives a qualitative indication of the system response as a
function of input amplitude. The switch time method is based on the use
of step inputs for analysis and design purposes. It provides the control
system designer with the following:

1This report was submitted to Stanford University in partial
fulfillment of the requirements for the degree of Doctor of Philosophy
in Electrical Engineering, June 1959.



(1) A means for analysis of saturated control systems to determine
the size of the step inputs which cause poor performance.

(2) A means for quickly calculating the response time for large
step inputs.

(3) A means for synthesizing nonlinear functions which provide near
optimum response for large step inputs.

The switch time method uses the optimum bang-bang solution for step
inputs. It is shown that if the first reversal time after the applica-
tion of the step is longer than the bang-bang solution, overshoot must
exist. By forcing the first reversal time to be the optimum relay solu-
tion one obtains the method for synthesizing nonlinear functions which
provide near optimum response for large inputs.

A number of optimum bang-bang first reversal timesAand minimum
response times are derived and presented in normalized form.

The switch time and root locus methods are applied to several
aircraft autopilot examples where the rate of control-surface motion is
limited. Both sampled-data and continuous systems are presented. The
results of simulation studies demonstrate the validity of the approach.

It is generally concluded that the combination of the switch time
method along with certain root locus techniques offers a very powerful
tool for analyzing and designing both sampled-data and continuous
systems in which a saturation type nonlinearity is present.
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I. INTRODUCTION

1.1 Discussion and Scope of the Problem

The design of linear, continuous and sampled-data, feedback control
systems has become a well advanced science in recent years. In most
instances, control systems are designed by the use of a linear model.
The actual system is then constructed and the difference between the
desired response of the linear model and the response of the actual
system is attributed to nonlinearities. Generally, one can subdivide
the types of nonlinearities into classes which signify the manner in
which they deteriorate the desired model response. For example, con-
sider the two classes as (1) nonlinearities whose principal effect is
on the nulling accuracies, and (2) nonlinearities whose principal effect
is on the transient response. In the first class, one may place back-
lash, dead zones, hysteresis, quantizing errors, etc. 1In the second
class, one can place saturation and nonlinearities which make the "plant
transfer function change as a function of the magnitude of some plant
variable (e.g., pitch-up of an aircraft where the pitching moment is a
nonlinear function of the angle of attack). The classification can be
made generally, since the nonlinearities of the first class produce bias
errors and/or limit cycles whose amplitude must be kept small to be within
the tolerable error region. If the plant is linear, which is one of the
restrictions of this investigation, the effects of saturation can be
fairly well isolated from the effects of many other nonlinearities. Since
all systems must have saturation of one or more of the variables, it
appears desirable to develop methods which are specially suited to analyze
and design control systems with saturation.

nl

The effects or saturation in a control gystem are to limit the
velocity, acceleration, or higher derivatives with which an output can
follow a given input. If the system is reasonably free of nonlinearities
of the first class previously menticned, linear methods may be used to
design the system for a desired performance around zero error. Then, by
means of the methods presented here, the effects of saturation on the
particular system designed may be determined and appropriate compensating
nonlinearities may be designed to insure adequate stability and transient
response for large error conditions.

One of the significant features of saturation is that its presence
in a control system permits an optimum system to be defined. This opti-
mum system uses the maximum, or a smaller value of the saturated variable,
in an optimum manner to reduce the error to zero in a minimum time. This

1The word "plant" refers to the controlled system. The plant trans-
fer function could, for example, be the mathematical relationship between
the output of an amplifier and a motor shaft position in a servo-position
controller.



fact is used in this investigation for the derivation of minimum response
times of saturated control systems for step inputs. A method is then
presented in which the approximate response time of any given system
which uses a linear controller can be obtained so that a comparison
between the optimum and actual response can be made. These data allow
the designer to determine if a larger controller is required and to what
extent increasing the complexity of the control equations will decrease
the response time.

This investigation considers plants whose transfer functions are of
first to fourth order. Two examples, one second order and one third
order, are used wherein the plant has a single zero in its transfer
function. The other plants which are considered have only poles.

Two aircraft autopilot examples are designed for both sampled and
continuous systems to demonstrate the design methods proposed; simula-
tion results are presented for verification of the design philosophy.

1.2 History of Previous Work

Saturation in control systems has received considerable attention
by many authors in recent years. Saturation is very closely related to
relay or on-off control systems, since for large inputs the saturated
variable takes on its maximum values (switching from one to the other)
in a manner which is similar to the on-off control system. This means
that much of the previous work related to on-off controllers can be used
in studies of continuous-type saturated contrcl systems. Not much has
been accomplished until quite recently with regard to saturated sampled-
data systems. Probably the most complete bibliography pertaining to
both these subjects as well as other subjects dealing with control
systems is the one being prepared by Higgins (ref. l).2 Previous work
which is used in this investigetion is listed in the Bibliography. One
contribution which is used most directly can be found in a paper by
Kalman (ref. 2). He showed that a sufficient condition for stability is
that the roots of the characteristic equation with the nonlinearity
replaced by 2 gain equal to its derivative remain in the left half plane.
The abrupt changes in slope of a limiter are assumed to be formed by a
segment of a circle with an arbitrarily small radius. This assumption
permits the derivative to be defined at every point and, therefore, the
gain of the limiter varies from some finite slope to zero in a continuous
manner. A similar argument which shows a limiter can be treated as a
gain which decreases as the input amplitude increases can be obtained by
the use of describing-function analysis (see, e.g., ref. 3). As is shown
by Kalman, one can draw a root locus as a function of limiter gain, which

2See the numbered references which appear in the Bibliography.




provides a qualitative indication of variation of system performance with
input amplitude. This is used in developing some rules regarding systems
in chapter II.

Bellman, Glicksberg, and Gross (ref. 4) proved that the minimum
response time of a bang-bang controller was obtained by having the satu-
rated variable go from one limit to the other with the number of reversal
times being dependent on the order. This proof was restricted to systems
containing distinct roots on the negative half of the real axis. Further
discussion of optimum relay systems and application of the theorem of
reference 4 is made in chapter III.

The author and Triplett (ref. 5) demonstrated one technique of
designing nonlinearities for saturated control systems which makes use
of the optimum relay solution. This technique is referred to as the
switch time method and is derived in chapter II. One of the purposes of
this investigation is to extend this switch time method to sampled-data
systems. The extension is also explained in chapter II.

Standard design techniques are used for the design of the system in
the linear region for continucus (ref. 3) as well as sampled-data (ref. 6)
systems, with the exception that the sampled—data designs use the addi-
ional method described in a cer
a 14—

1so described in NASA MEMO L4-

Tﬁ -
e 41 ucLU\,_L h" T;ﬂ“ aut THH \T'Cf- ’7)

59 A ( ef. 8) by the author and Harper).

1.3 Description of the Problem

The problem.ls best understood with reference to the block diagrams
shown in figures 1{a) and 1{b)}. Here, r(t) represents the input command
signal and c(t) represents the output of the plant (controlled system).
In general, one desires the error (r-c) = e€(t) to be as small as possible
for all inputs, r, the system will receive. A limiter is located on the
input to the plant. Limiting in actual practice can come from a number
of sources such as tube saturation in electronic systems, physical stops
in mechanical systems, etc. This limiter causes the input to the plant,
X, to be a bounded varisble; that is, | x| cannot exceed B and (if one
has the optimum system) will restore the error, €(t), to zero in a
minimum time.

In figure 1, D(s) represents the transfer function of an analog
controller and H(s), the transfer function of a feedback network. In
the sampled-data system, a zero-order hold circuit is used to convert
the pulse signal to a continuous signal; D(z) is the pulse transfer
function of the digital controller.
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Figure 1.- Block diagram of systems to be considered.




The plant transfer functions, G(s), to be considered in this report
are given in table I. The conventional definition according to “type,"®
with the added specification of the order of the denominator of G(s), is
given in table I for the various plants. It is generally convenient to
consider the various systems obtained by determining the lowest order
output bounded derivative for x remaining at one of its bounded values
for an infinite period of time. Since all the roots of the characteris-
tic equation of the plants given in table I, other than those at the
origin, are in the left half plane, one can state that all type 1 plants
are "velocity limited," all type 2 plents are "acceleration limited,”
etc. This classification will be found useful in remembering some of
the fundamental characteristics of saturated control systems which are
derived later.

Table I.- Plants considered in this investigation

Case G(s) Type
) % 1 - first order
K —~ : 3
5 Ele*_ : 1 - second order
s{Tos+1)
K .
. sl (82/wp2) + (2¢s/wp) + 1] 1 - third order
y j% 2 - second order
s
K(t,s+1) ‘
2 Y)Y 2 - third order
s2(vos+ 1)
6 . 2 - fourth ord
T (o7/onE) + (@ls/an) + 1] | - fourth ovder
! 5% 3 - third order

3"Type" in this usage means the number of integrations of the plant
or, in transfer function terms, it 1s the number of poles at the origin.
In the usual definition of the word it refers to whether there is a zero
error in the steady state to a step (type l), zero error to a ramp
(type 2), etc. In this investigation no integrations or cancellations
of plant poles are permitted in the transfer function of the controllers
D(s) or D(z). Under these restrictions the conventional type definition
and the usage of type on the plant transfer function are identical if
H(s) = 1; that is, a type 1 plant gives a type 1 system, etc.



The problem can be broken down into the following basic questions:

(1) Given a control system as in figure 1(a) where D(s) and/or
H(s) or figure 1(b) where D(z) and/or H(s) have been designed
to glve satisfactory performance in the unsaturated region,

(a) How can one predict the performance with large input
transients?

(b) If this performance is unsatisfactory, what means can be
used to improve it?

(2) What is the optimum performance of a given plant for a step
input? For example, what is the minimum response time as a
function of the magnitude of the input?

Questions 1(a) and 1(b) are answered in chapter II. The examples
in chapter IV demonstrate the method. Question 2 is answered in
chapter III.

The author would like to express appreciation to Dr. G. F. Franklin
of Stanford University for his technical advice during the course of
this investigation. Appreciation is also expressed to both Dr. Franklin
and Dr. Irmgard Fligge-Lotz of Stanford University for their helpful
suggestions made during the preparation of this report.
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II. METHODS FOR ANALYSIS AND DESIGN

2.1 Introduction

Saturated control systems of the type shown in figures 1(a) and
l(b) have characteristics which are very much dependent on the input
amplitude if the input is a step and on both the input amplitude and
frequency if the input is a sine wave. Systems designed on a linear
basis can become unstable or have a very long response time if excited
into the nonlinear (saturated) region. It is the purpose of this
chapter to review the various methods of treating saturation for con-
tinuous and sampled-data systems and to extend one method to sampled-
data systems.

2.2 Root Locus

oy s . - . / ~ “
Describing function analysis (e.g., rel. 3 pli o
gives the result that a limiter is equivalent to a gain reductic
1/\?1 /\| |'he i‘ﬂpu_l 7\11+11NQ Rr\f\l 0T I\:{atl’l@;’w‘s; and ‘t

IunctTlior Cl.llLU_L...L vuUuus . SO LRI y

a control system such as figure 1 can be treated approximately as an
equivalent gain. If one assumes the limiter is equivalent to a gain
which decreases as the input increases, then a root locus of the system
drawn as a function of the limiter gain gives a qualitative picture of
the system_behav1or as the input signal to thc limiter changes amplitude.
Kalman (ref. 2) states that if any nonlinear system is stable when
linearized at every operating point, then the nonlinear system is stable.
Thus, a root-locus plot of the pole positions as a function of the
limiter gain can be used to give qualitative information as to what
change in performance is to be expected.

The following rules? are developed by the root-locus method:

1This investigation is restricted to systems where any poles of
D(s) or H(s) are heavily damped. This restriction is quite necessary in
the method to be presented later for synthesizing nonlinear functions
which provide near optimum response for large inputs. With reference to
figure l(a), one can see that large step inputs immediately saturate the
limiter. This saturation tends to open up the loop, and thus poorly
damped characteristics of H(s) or D(s) would cause the input to the
limiter to become very oscillatory, possibly swinging the output of the
limiter back and forth at a high frequency. This restriction is not too
serious since, generally, lead or lag networks or other compensation
networks with real poles are used for D(s) and reasonably well damped
instruments are used for H(s). From a practical standpoint, the methods
presented here are almost always applicable.
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Rule I. A type 1 system which is not conditionally stable® and
which is designed for good performance for small inputs will always be
stable for large inputs.

Proof': A
Consider a root locus of a type 1

system as shown in figure 2 for a third- B

order example. If, for example, A, B, and C ——)

are the chosen pole positions for the oper-

ating gain of the system, then large inputs,

which cause greater limiting action to take

place, cause the poles to move back along C
the loci in reverse to the arrows. Note

that the dominant mode of the system (the

pole closest to the origin) represents a Figure 2.- Root loci of
first-order lag which, as the gain reduces, a type 1 system.
becomes longer. This, then, allows the

rule of thumb which is almost always true and is easily remembered,
namely, "velocity limiting tends to stabilize the system."

Corollary:

A type 1 system which is conditionally stable can be excited into a
constant amplitude, constant frequency oscillation characteristic of a
limit cycle.

Operating
point

Proof:

A conditionally stable type 1 system
must by definition be unstable for low
gains as well as high gains but stable for
the operating point gain. The root loeci of
poles nearest the origin for a high order
system can be of the form in figure 3.° If
the gain is decreased from the operating
point (by action of limiting), the charac-
teristic poles of the system move in
reverse direction to the arrows. An Figure 3.- Root loci of s
increase in the limiting action which conditionally stable
causes the gain to decrease to point A type 1 system.

ZA conditionally stable system is defined here as one in which
either increasing or decreasing the limiter gain from the operating value
results in the closed-loop poles moving into the right half plane.

3Conditionally stable designs can be obtained in high-order systems
by any poles which cross into the right half plane and back to the left
half plane as the limiter gain is varied from zero to the operating
point. A similar argument to the one presented here shows the corollary
to be true in these cases for systems of any type number.
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results in an increasing amplitude decreasing frequency oscillation of
the system, since points from A to B of the loci are in the right half
plane. A further growth in the amplitude of oscillation, which would
cause loci to move in the left half plane from point B results in a
decrease in oscillation amplitude. Point B, therefore, is a stable
limit cycle from which the system 1s unable to recover.* The system can
be shocked into this limit cycle by large input transients such as steps
which cause a large equivalent gain reduction of the limiter.

Rule II. A type 2 control system, which
is designed to have good performance for small
signals (linear region) and which is not a con- 2
ditionally stable design, will have a transient
performance which becomes increasingly poor as
the size of the transient is increased (i.e.,
the equivalent gain is decreased).

Proof: Figure 4.~ Root loci of

a type 2 system.
A root locus for a type 2 system for
poles close to the origin will be as indicated in figure 4. As the gain
i creased (by limiting action) from the operating point A, the charac-
teristic roots move to a position corresponding to decreased frequency
crcased damping. Thus, the response of thc system Lo a large tran-

LT

el o

sient which gives a large amount of limiting will be characterized by a
number of oscillations before the system
comes to rest. Figure 5 illustrates the
characteristic step response for several ":",
step input magnitudes. This, then allows Q
a second rule of thumb, namely, "accelera-
tion limiting tends to destablize the
system. "

Out

Corcllary:

A conditionally stable type 2 system
which is designed to be stable for small Time
signal amplitudes may be excited (by a Figure 5.- Time step
large transient) into an increasing ampli- responses of a satu-
tude, decreasing frequency, unstable mode .> rated type 2 system.

“Kalman (ref. 2) states that as points A and B move closer together
(by other changes in system parameters) the limit cycle disappears before
the locus is completely in the left half plane. This is not surprising
because linear techniques certainly cannot explain all nonlinear phe-
nomena. Since in control system design one generally tries to avoild both
limit cycles and oscillatory transient responses this subject is not
considered in this investigation.

®See footnote 3, chapter II, and refer to the corollary of Rule I for
g proof that a constant amplitude limit cycle can exist in a high-order
type 2 system.
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Proof':

A root locus for the poles closest to the origin of a type 2 condi-
tionally stable system could be as indicated in figure 6. As the equiva-
lent gain of the system is decreased by
limiting action, the poles move in a
reverse direction to the arrows. The
response of the system becomes less and
less damped as the input to the limiter

A
B
grows (i.e., the greater the limiting >

action). If the system receives a

transient which makes the equivalent

gain less than that corresponding to

point B, the response will diverge in a

growing amplitude, decreasing frequency

mode , since a further growth in the

response gives greater limiting action

which causes the poles to move closer Figure 6.- Root loci of a

to the origin in the right half plane. conditionally stable
type 2 system.

Rule III. A type 3 system which is

designed for satisfactory performance for

small signal levels can always be excited

into a growing amplitude, decreasing

A

frequency, unstable mode 5 \

Proof: 3
With reference to figure 7, it is seen

that a type 3 system must always be condi-
tionally stable. Therefore, a large input
can cause limiting action to decrease the
gain so that two poles are in the right Figure 7.- Root loci of
half plane. a type 3 system.

2.3 Discussion

The root-locus method gives considerable information on what kind
of response to expect as a function of the size of the input. It can be
used for saturated sampled-data systems by using root-locus plots in the
z plane, examples of which are shown in chapter IV. The drawback of
the root-locus method, however, is that no quantitative information is
available, that is, there is no measure of the size of the input which
causes a poor response. In order to gain quantitative information, it

80ne should alsoc note that a constant amplitude, constant frequency
limit cycle can exist for high-order type 3 systems.

oTé =¥
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is necessary to resort to a different technique. One possibility might
be the phase space; however, it is the opinion of the author that analysis
of a system of third order or fourth order by visualizing trajectories in
a phase space 1s very difficult. A second method suggested by Kalman
(ref. 10) uses a transformation to a state space where the system can be
approximated by a dominant second-order mode. The problem is then solved
in a phase plane and the results are transformed back to the original
state space. Although this method appears to have some merit, it is only
approximate, and there may be a question of which is the dominant mode.
With reference to the preceding root-locus presentations, one could state
that a type 1 system usually has a first-order dominant mode, a type 2
system usually has a second order, and a type 3 system usually has a
third order. This would mean that Kalman's method could not be used for
a type 3 system. A third method was proposed by the author and Triplett
(ref. 5) for the analysis and synthesis of an aircraft autopilot with
control-surface rate limiting. Control-surface rate limiting is equiva-
lent to saturation of the input to the plant, and, therefore, this method
can be used for any saturated control system. The methcd will be referred
to as the switch time method. It provides the control system designer

with the foliowing:

(1) A means for the ana
determine Lhe size

formance. This is described in section 2.k.

)"Ul

of saturated control systems to

+tan 1hhﬂTL, which causce jelelokq

+ =t

Cie Step Wil caust POCT per-—

(2) A means for quickly calculating the response time for large
step inputs. This is described in section 2.5.2.

—~
w
e
J o=

means for synthesizing nonlinear functions which provide
ear coptimum response for large inputs. This is described
in sectlon 2.6. Bection 2.7 discusses some of Lhe limita-
tions and how root loci may be used in conjunction with the

switch time method to overcome some of these limitations.

(L) A direct extension of items (1), (2), and (3) to sampled-
data systems. This extension is discussed in section 2.8.

2.4 Switch Time Method, Analysis

Consider the block diagram of a saturated control system shown in
figure 8. If interest is restricted to step inputs, then the time

1 s /
r{#) + Dls) mi(t) +5/B x(7) Gs) 44)

Figure 8.- Block diagram of a saturated control systcm.
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response of the output, c{t), can be computed completely, since the
system can be treated by piecewise linear analysis. The system is

linear for m(t) less than #B. For m(t) greater than *B, the response
is simply the response of G(s) for an input step of magnitude *B, plus
initial conditions. For almost all systems D(s) will be a network which
has a high frequency response equal to a constant or at least, for a

step into D(s) the output response, m(t), will be very fast during the
initial part of the transient. Therefore, m(t) for a step input, r(t),
will initially jump to a value dependent on the size of the input step.
This value is usually easy to calculate from the high frequency response
of D(s). One can, therefore, calculate the size of the input step which
first causes saturation. Below this amplitude the response is linear and
is given by equation (1), if zero initial conditions are assumed.

-1 Bg G(s) D(s)
o(t) =L [S l+Ms)D@)} (2)

(L7 F(s)] reads the inverse Laplace transform of F(s), similarly
L[f(t)] reads the Laplace transform of f(t).) For an input step, Ry,
large enough to cause saturation, the response, c(t), is given by
equation (2) so long as |m(t)]| > B.

o
N
ot
S—r
I
=

!
H
—
|+
2lley

G<s>J (2)

and m(t) is given by equation (3)

n(t) =L—1{% _ [i—

For Reo positive, the sign is taken as positive in equations (2) and
(3), thus, |m(t)| given by equation (3) is generally a decreasing func-
tion of time. As a result a certain time, after the application of the
step, has to pass before [m(t)| is less than B. Since m(t) = x(t)

for |m(t)] < B, this is the value of time during which the input to the
plant, x(t), is at its meximum value. The value of this time is referred
to as the first reversal time, T;, eand with reference to equation (3) it
is seen to be a function of the step input magnitude, Ry. If a way can
be found for relating the first reversal time to some characteristic of
the output response, then T,, as a function of input step magnitude, can
be used as a criterion of design. This can be accomplished by defining
an optimum T; &as the first reversal time after the application of the
input step, which is such that if succeeding motions of the bounded
variable are optimum, the error and its derivatives will be reduced to
zero in a minimum time. Consider as an example the system shown in

w]to

G(s>]}[n<s>1 (3)
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figure 8 with G(s) equal to 1/s® and B equal to unity. For an input
step, r(t) = Rou(t), the problem is to determine the optimum motion of x
so that e(t) is restored to zero in & minimum time. For this example,
the bounded variable, x, equals €, the output acceleration, and it is a
well known fact that in order for this system, with bounded acceleration,
to start from rest at one point and come to rest at another in the minimum
time, the system must accelerate at its maximum half of the time and
decelerate the other half. The time histories of x, ¢, and ¢ for an
optimum step response are shown in figure 9(a). It is apparent from the
time history of ¢ that this must be the optimum response since

m
b/\ (¢)at is a maximum in the given time.
o

An area integration of the triangular curve for c¢(t) in figure 9(a)
gives the desired relationship between Ry, the optimum first reversal
time T,, and the minimum response time, Tp.

Ro = 7,7 = B (%)

I& ilhe [irst reversal time for this system is longer than the cpiimum
defined in equation (4), the system must overshoot. This is caused by
the fact that ¢ or x is limited and it is impossible for the error
(Rg-c), ¢, and x (or ¢€) to be zero simultaneously until some time
greater than the minimum response time, Ty, of the optimum shown in fig-
ure 9(a). An example of such a motion is shown in figure 9(b). If the
first reversal time is shorter than the optimum, the total response time
will be longer than the optimum, since optimum use is not being made of

ad variahla
LCO Variaoie.

R N}
It

43 i aen
vile Dol

+] +1 ]
x(1) x(1)
_| — _| —_— ——
i T 7
c(?) l |
I~
: I
I |
0 1
c(?) I
| |
(a) Optimum. (b) Nonoptimum.

Figure 9.- Step responses for a second-order system.
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Nete that for both examples, the transition time for x +to go from
one limit to the other is assumed to be zero. This is only true for an
infinite gain limiter or an ideal relay. This is one limitation in the
application of the switch time method to finite gain situations. It is
an approximation which only becomes exact for infinite gain limiters or
infinite inputs. Applications of the analysis method, however, which are
shown in succeeding sections illustrate very good results for most
saturated control systems.

An application of the switching time analysis method to the example
shown in figure 10 is now considered. Prior to applying the method, a
linear design for small signals must be established. For this purpose

) AT A [T o)

+
K
se-{n e

P

Figure 10.- Block diagram of a saturated control system.

it is assumed that the system gains, K. and K, are to be chosen so that
the response from 1r to ¢ 1in the linear region has a second-order
denominator with a natural frequency, wp, of 10 and damping ratio, ¢,

of 0.7. The desired transfer function is given in equation (5).

C(s) _ 1
R(s) (s2/100) + 0.1lhs+ 1 (5)

The transfer function of figure 10 is

c(s) _ 1

R(s) (s2/%c) + (K&/Ke)s+ 1 (6)

Equating the unknown coefficients of equation (6) to equation (5) gives
Ke = 100, X5 = 14.0. From equation (3) and with reference to figure 10
m(t), for step inputs which saturate the limiter, is given by

m(t) =L‘1K§§ - —S%>K€ - gg] = <RO - %)Ke-Két (7)

Equation (7) is valid until m(t) is smaller than unity, the limit level.
Note from figure 10 that for Ke = 100, saturation will occur for a step
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input, Ry, greater than 0.0l. For this system, then, one can set m(t)
equal to unity in equation (7) and solve for T;, the first time x will
come off its limit.

T12+—§ZK&T1+-I—{2—€-—2RO=O (8)

Solving equation (8) for T; and recognizing that T; must be positive
gives (for K¢ = 100, K = 1k)

T, = -0.14% + J2Rg - 0.000k (9)

Equation (9) is only valid for R, greater than 0.0l, since, as was
previously mentloned, saturation does not occur for R, less than this
value.

It has been shown that the system must overshoot because of the
limiting action if Ti, given by equation (9), becomes greater than the
optimum given by equation (%). One can thus plolL T, versus R, as
obtained from equations (4) and (9) and compare the results. This com-
noaricen 1e chown in figure 11 where it is seen that 1if the input step
magnitude, Ry, is greater than 0.12, overshoot as a result of limiting
action must exist. Thus switch time analysis gives the size of the
inputs at which overshoot caused by limiting must occur, and the root
locus can be used to determine qualitatively what deterioration in
response may be expected above this value.

2
Actual~_ ’,7#’ -
/>+’ I

\

-
///

First reversal time, 7, sec

o

4 .8 1.2 1.6
Input step magnitude, A,

Figure 11.- First reversal times of example system.



18

2.5 Calculation of Response Times

As has been mentioned, saturation in a control system is one type of
nonlinearity for which the output response can be calculated exactly,
since the system can be treated linearly on a piecewise basis. It is the
opinion of the author that these exact time history calculations are much
too laborious for hand calculations except in the simplest cases and, if
exact results are desired, one should use electronic computers. From
this standpoint the method described here is approximate and is intended
for use by those who desire to obtain gquickly the approximate behavior of
the output of a saturated control system when the input commend is a step.

When step inputs are applied to a saturated control system the
problem of the calculation of response times can be subdivided into three
categories dependent on the size of the input. These categories are
(1) small inputs where the system is linear, (2) medium size inputs where
the time the system is saturated 1s a small percent of the total tran-
sient time,7 and (3) large inputs where saturation occurs a large per-
centage of the total transient time. Of these three categories, an
approximate calculation of the response time can be made for (1) and (3).
The second category represents a transition region where the system
response is slightly nonlinear and the response time is not much greater
than that of the linear region. The proposed methods will be demonstrated
using the example and coefficients previously cocmputed for figure 10.

2.5.1 Linear region.- The transfer function relating C/R for
figure 10 is given in equation (5). If one assumes that r(t) is a step
of magnitude Ry, (r(t) = Rou(t)), then the error time function, €(t),
can be written as (for wy, and £ of arbitrary value)

71 _ =717t ‘59 - L
e(t) =L7'[R(s)-C(s)] = L { 5 [l (SZ/wHZ)-Jr(ECs/wn)a—J}~

(10)

= RO{—%C—S-Z—Z sin(wn\/l— t2 t - tan * __lf§_§2_>J (11)

The error time function for this second-order example 1s seen to be a
damped sine wave whose amplitude is proportional to the magnitude of the
input, R,. In general, the error time function for a step input to any
satisfactory linear feedback control system is composed of exponential

"Transient time is defined as the time from the initial application
of the step until the error is smaller than some number, and remains
smalley than this number indefinitely. If the transient time is infi-
nite, this, by definition, means the system is either unstable or the
response has a constant amplitude oscillation.
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decays and/or damped sinusoids whose magnitudes are proportional to the
magnitude of the input step. It is thus clear that the time required to
reduce the error to zero is infinite. This leads to a difficulty in
defining the response time of a linear system. There are two reasonable
ways to define a useful response time. First, response time can be
defined as the transient time (see footnote T, chapter II); second, the
response time can be defined as the time required after the application
of the step for the error to be reduced (and stay below) a given per-
centage of the input step magnitude. The second method is generally
referred to as the settling time (ref. 11). The first method has the
advantage in many instances of being a criterion which has practical
meaning to the control designer and shows a linear system to have a
response time which increases with the magnitude of the transient dis-
turbance. The method has the disadvantage that it is very complicated
to calculate the response time. The second method has the strong advan-
tage of simplicity, and for this reason it will be used in this investi-
gation. The disadvantage of the second method 1s in trying to use it in
nonlinear problems where the characteristics of the step response change
significantly with the size of the input. In this case the method loses
its simplicity and one should probably use the first method.

For the second-order example with w, = 10 and { = 0.7 and using
vily tho exponential of equation (11) with +he assumption that the
response time is the time when the envelope of the error Lime response
curve is less than 10 percent of its initial wvalue, one obtains

T
e7 v

il

10 (12)

or the response time

in 10
Tr

T

0.33 sec (L3)

2.5.2 Saturated region.- If the input is in the saturated region a
large percentage of the transient time, then it seems reasonable that a
good criterion for the response time would be the response time of the
relay or bang-bang solution. A method of accomplishing this is best
described using the previous second-order example. In order to calculate
the response time, one needs the actual first reversal time, the
optimum first reversal time, and the minimum response time as functions
of the input step. The first two were computed for this example in
section 2.4 with results given in figure 11. The minimum response time
is given as a function of the step megnitude in equation (4). The three

results are shown in figure 12. For inputs less than point A (R, = 0.12),

we shall assume the response time is equal to the minimum until one
reaches the intersection point of the computed linear response time and
the minimum response time curves. This is a reasonable approximation,
although the response time of the linear system and the minimum response
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Figure 12.- Calculation of response time of example system.
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time have different definitions. The response times for inputs greater
than A are calculated in the following manner. Assume the input is equal
to 0.64, for example. One first proceeds to point B which is the first
reversal time for the system for this size step. The first reversal time
is greater than the optimum so the system must overshoot. If succeeding
motions of the system were optimum, the system would overshoot to a value
given by point C (arriving there with all derivatives zero). The time
.required to arrive at this point is given by the minimum curve for an
input of 1.0 in figure 12(b). Calling this time T¢ and reading its
value from the curve gives Tp = 2 seconds. The system starts from
point C with only the error having a value, so it is equivalent to a
step of magnitude equal to the difference between C and B which is
0.36 units. From this one proceeds to point D, the first reversal time
for a step of 0.36 units. From here one proceeds to point E and reads
Tg from figure 12(b), Tg = 1.4 seconds. The difference between point E
and D then gives a step of 0.14 units magnitude (point F) and very little
overshoot for this input is 0] Sfep' mognitude
AY
N

predicted. Reading response
time for this magnitude input .64 L' ————— TN T
from figure 12(b) gives T

Tp = 0.7 second. The calcu- c

-
= b
ted response lime for a !f h
b4 unit step is thus 0 4

Tp=Tc+ Tp+ Tp= 4.1 sec  (1k4) Time, sec
Figure 13.- Sketch of response for

This is one of the points on 6 example system.
the calculated curve shown j;/,

N

in figure 12(b). The time
response of the system is £
sketched in figure 13. One J / l
Proceeds in a similar manner <

to calculate response times
for inputs of other sizes.

\‘Colculotedw

The method outlined
above for predicting the
respense time for large
inputs is approximate in
many cases and needs some
clarification with regard to
when it is exact and what its Vi
accuracy is in general. With
regard to accuracy, the 09
response time of the example
system was measured from 0] 4 .8 I.2

analog computer results, and Input sfep mognifude, '[‘70

the calculated and measured .
. . Figure 14.- Calculated and measured
curves are shown in figure 1k4. .
response times for example system.

O Measured

Response time, sec
N
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The measured curves were obtained by measuring the time required for the
error to reduce and remain below 0.0l units for inputs greater than

0.1 units. Data for step inputs with amplitudes less than 0.10 units
were obtained from the definition of response time as the time for the
error to be reduced and remain below 10 percent of the input step magni-
tude. The measured and calculated results are seen to be in close
agreement.

The method is exact when an ideal relay is used in place of the
limiter and the plant transfer functions are either first or second
order. The validity of this statement for the first-order system should
be obvious. For the second-order case it can be shown by means of the
phase plane. Consider the system shown in figure 15. Step inputs to

| +0as

52

i)+ m(?) _]— X[ c(t)

Figure 15.- Block diagram of a relay control system.

this system are equivalent to initial conditions on c¢; therefore, we

can use either c and ¢ as phase space variables or ¢ and é, since the

trajectories are identical except for sign. The trajectories are parts

of parabolas (see, e.g., ref. 10); a typlcal trajectory for one input is

shown in figure 16. The time for the trajectory to go from A to B is

obtained by takinglAh}Bfas the input step magnitude and using the mini-
. . 8 . .

mum curve in figure 12(b).  Similarly, the ¢

time required to go from B to C is obtained by

takinngh{C(as the input magnitude and using

the minimum curve of figure 12(b), etc. The E

total time is obtained by summing all the indi- /

vidual times and adding the time required to B C

go to the origin from the end point where

Fliigge-Lotz and Lindberg (ref. 12) have shown

the system follows the switching equation.

The switching equation is linear and first

order in this example, and the response time e

can be readily estimated. What is done then Switching curve

for higher order systems is to approximate =__aé-

them by a second-order relay-~type system. The i 16.—- Phase plane

accuracy of the calculation depends on the teure 4h.” ° ase bian

degree to which this approximation is valid. trajectories for a

relay control system.

A

®This statement can be verified by reviewing section 2.4 where the
minimum curve was derived.
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The sampled-data results presented in chapter IV for third-order systems
show the method gives a good idea of the deterioration of the response
with the size of the input. This, of course, is all that is intended
for the method, and, thus, it satisfies the original purpose for which
it was developed. The advantage of the method is its simplicity. The
curves used for calculation have additional use in the determination of
nonlinear functions which, when introduced in the system, give almost
optimum response. The subject of the determination of nonlinear func-
tions to improve poor responses is considered next.

2.6 The Determination of Nonlinear Functions
to Improve the Step Response

The proposed method for the design of nonlinearities to improve the
step response is based on the idea of forcing the first reversal or
switching time to be equal to the first reversal time of the optimum
bang-bang system. This objective is achieved by introducing a nonlinear
function into the error channel {for cxample, making the error gain a
function of the error) or into the output derivative channel {Lfor

examn izking the output velocity feedback a nonlinear tunction of the
output veloc1ty)

This method was first reported in reference 5. 1In this previous
report both a type 2 third-order and a type 2 fourth-order plant were
designed with considerable success, although the limitations of the
method and the theory behind the derivation were not very well under-
stood at {the time. In this section the method will first be explained.
Tt will then be shown that for second-order optimum bang-bang systems,
it gives precisely the same result as the phase plane.

The method is best described by working an example. The example
chosen is the simple second-order system shown in figure 10 whose actual
and optimum first reversal times are plotted in figure 12(a). The design
will result in a nonlinear function in place of either Ke or Ké. As was
previously mentioned, if the step input 1s greater than 0.12 units, the
system must overshoot. We shall thus use the gains K¢ = 100 and K& = 1k4
until we arrive at a condition which would have overshoot. Above this
condition K. and/or Ki will be made nonlinear to prevent the overshoot.

Equation (7) gives m(t) as a function of Ry, t, K., and K;. This
equation is valid until the first reversal time, T,. Since the optimum
first reversal curve (fig. 12(a)) gives R, as a function of T; and
the value of m(Tl) is equal to 1, equation (7) can be solved for Ke
or K& at T;. These gains can be plotted as functions of error or output
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rate in order to determine a function of a single variable® (i.e., Kg(e)
or Ka(¢)). When either one or the other is introduced into the system
in place of the constants, it will give the desired first reversal time
for a zero overshoot output response.lo Note that what we are actually
doing is taking the optimum relay solution at one time (the first rever-
sal time) and designing nonlinear functions which force the bounded vari-
able of the actual system to reverse at the same time for the same input
as the optimum relay system.

At the first reversal time, T,, (for large inputs which cause x
to be saturated)

BG(S)]

e(T1) = Ro(Tl)’:L—l[ = = Ro(T1) - —= (15)

Ro(T1) is obtained from figure 12(a), that is, it is the optimum relay
solution. The output velocity, ¢, at the reversal time, T, is

¢(Ty) =Lt I[BG(s)] = Ty (16)

One can solve equation (7) for K to give

m(T1) - KaTy

RO<T1)"'(T12/2) (0

Kc(e) =

If K. is assumed to be a constant (Ki = 14) and m(T,) = 1, we can
obtain Xc(e) (from eq. (17)) and €(T;) (from eq. (15)); the nonlinear
function of a single variable which when introduced in place of the
constigt gain K. on figure 10 will give the optimum first reversal
time.

%0One need not find only functions of single variables. For example
one could obtain Kg(e). However, in the installation a multiplier would
be required which is undesirable. These functions of more than one
variable have not been studied, since to be realized they require a more
complex system.

0ne need not design for zero overshoot. The optimum first reversal
curve may be shifted upward to give any desired overshoot the designer
requires. Although this modification is recognized, it has not been
studied in this investigation.

*!Note again that the transition time, that is, the time for m(t) to
go from one limit to another is assumed zero. Since this assumption can
never be valid except for an ideal relay, 1t 1s preferable to make
m(T;) = 0 in equation (7). This gives Kc(e€) a slightly lower value than
equation (17) which improves the approximation.
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Similarly one can solve equation (7) for Kga(¢) which is given in
equation (18)

Kee(T;) - m(Ty) ) K [Ro(T1) - (T:5/2)1-1

Ké(é) ) é(Tl) Ty

(18)

and use equation (16) to obtain the nonlinear function of a single vari-
able. In equation (18), K. is assumed constant (K. = 100). DNote again
that it is probably better to make m(T;) = O in equation (18).

The results of the equations (17) and (18) are plotted in fig-
ures 17(a) and 17(b). The dotted portions of the solutions are eliminated,

since we desire the system to be linear in this region of error or output
rate.

120 20

80 8
Ke(€) \ K:(¢)

40 D\ 40
~ /

\
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7
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0] 4 8 O .8
| €] |€]
(a) Nonlinear error function. (b) Nonlinear output

rate function.
Figure 17.- Nonlinear functions for example control system.
If one desires to generate these nonlinear functions by means of a

function generator, the input-output curve of the function generator can
be obtained by plotting € vs. Kc(e)e or & vs. Ka(c)e.
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The results of simulation studies have shown either one of these
systems (nonlinear error function or nonlinear output rate function) to
have desirable (i.e., almost optimum) characteristics for large inputs.

For the general case one can give the following steps for computing
nonlinear functions:

(1) Determine for the given G(s) or an approximate G(s) the
actual and the optimum first reversal times as a function of
the input size, R,.

(2) Determine the switching equation for the input to the limiter
in general eqguation form. For large inputs all the quantities
will be known as functions of time.

(3) For inputs where the actual first reversal time is longer than
the optimum time, determine RO(Tl) from the optimum curve.
This will be read from curves in chapter III for complicated
cases.

(4) Solve the switching equation of step 2 for the desired non-
linear function (e.g., Ke(e)). All quantities in this equa-
tion can be computed at the switching time, T, except Rg;
Ro(T1) is determined according to step 3.12

2.6.1 An optimum second-order system.- This section shows that
using the switch time method for an on-off second-order system results
in the same optimum system, that is, the same switching equation as the
phase plane method. This result along with the discussion on limitations
in the next section should give the user some confidence in when to
expect good results from this method.

Consider the on-off system of figure 15. The input, m(t), to the
infinite gain limiter (or ideal relay) is given by equation (19).

m(t) = e(t) +ac(t) (19)
The output of the limiter is

x(t) = sgn m(t) (20)

12These functions which are derived are symmetrical with respect to
the origin. This symmetry is a result of the assumption that the limiter
is symmetrical, that is, its maximum values (positive or negative) are
identical. Although the switch time method could be extended to cover
cases where the maximum values were not the same, it has not been done in
this investigation.
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Since we are only concerned with the sign of m(t), we set m(T;) = O in
equation (19) to obtain the switching equation

e(Ty) = ~aé(Ty) (21)

If we want the optimum step response, ¢(T,) is given by equation (15)
and Ro(T;) is taken as |Ro(T31)] = T:2. Thus

T,2
e(Ty) = —5- sen Rg (22)

and from equation (16) with reference to figure 15
€(T1) = -¢(T1) = -T1 sgn Ry (23)

Using equations (22) and (23) in equation (21) and solving for a gives

Ty

a =2 (24)
From equation (23)
Ty (T (25)
2 2 sgn R,

Sinc

e
can be

bk

€ 1is negative for R, positive and vice versa, equation (25)
simplified to

Ty 1€(Tq)]

R (26)
Substituting this result in equation (19) and recognizing it must be
true for all times gives the optimum first reversal curve
Fe(e)! .
e(t) + —5— e(t) = 0 (27)

Equation (27) gives the optimum system which is the exact result of
previous work (see, e.g., ref. 10).
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2.7 Limitations of the Switch Time Method

Section 2.6 demonstrated a method of computing functions of a single
variable in order to obtain near optimum response for large step inputs.
It was also demonstrated that the method, when applied to one second-
order plant (G(s) = 1/s2), gives the same optimum switching equation as
has been derived by the phase plane. It can be shown that the method
will also give the optimum switching curve for a plant transfer function
G(s) = K/s(rs+1), that is, for a type 1 second-order plant. What
remains to be considered are the following questions:

(1) In what general cases can one always expect good results?
This question could be rephrased as, "When is a single non-
linear function adequate to insure good response to large
steps?"

(2) In what special cases can one use a function of a single
variable and what additional technique is required to
determine simple functions of two variables (e.g.,
Ke(e)e + Kg(c¢)e) which will give good step response to a
broader class of systems?

Question number 1 can be answered in general by the following
statement: "The method will always give good results if there is not
more than one zero in the expression G(s) H(s) D(s) and the system has
'adequate stability''® in the linear region.” Arguments which meke this
statement plausible will be made in two steps; first, we shall investi-
gate the restriction of no zeros in the expression G(s) H(s) D(s) and,
second, the restriction of only one zero.

The characteristic equation of the closed~loop transfer function of
figure 1(a) is given by equation (28), where Xi, is the gain of the
limiter.

1+XpG(s) H(s) D(s) =0 (28)

If there are no zeros in the expression G(s) H(s) D(s), then immediately
one can rule out type 2 or type 3 plants, since they could not have ade-
quate stability. This can be verified by sketching root loci for any
type 2 or type 3 plants under the restriction of no zeros in

G(s) H(s) D(s). Thus, only type L plants need to be considered.’® A
type 1 plant must of necessity be "dominant" first order for large inputs

18Tr a11 poles of the linear closed-loop transfer function have a
demping ratio greater than 0.5, the system is defined as adequately
stable. The number, 0.5, is relatively arbitrary and probably best
determined by the experience of the control designer.

léType O plants are not considered in this investigation.

(0 %k
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(see rule I, section 2.2). The additional restrictions of adequate
stability for the linear region and no zeros in G(s) H(s) D(s) also
rule out conditionally stable systems. As a matter of fact, it appears
to be impossible for the damping of any complex poles to decrease appre-
ciably as the limiter gain is decreased without the system becoming
dominant first order.

A second argument is that if G(s) D(s) H(s) contains no zeros, we
might as well let H(s) = 1 and D(s) = K;, the gain constant. With
reference to figure 1(a) it can be seen that the X, the saturating
quantity, is only a function of the error. Thus, there is no reversal
of the sign of x required to obtain satisfactory response for step
inputs in the linear region. This system, therefore, requires no breaking
force in the linear region. Since it is velocity limited (see sec-
tion 2.2), saturation essentially "slows down the motion" which reduces
the necessity of braking even more in the saturated region than in the
linear region. Thus, it is difficult to reason why any reversal of the
sign of x should be required in the saturated regiocn.

The root-locus argument appears to be the best, and the reader
should sketch the root loci for a few plants to satisfy himself of the
plausibility of the argument. One can conclude that under the restric-
tion ol no zeros, no unonlinear function will be reguired for adequate

stability for large inputs.

Consider now the case with one zero in G(s) H(s) D(s). For this
example we can immediately rule out type 3 plants, as they cannot have
adequate stability under this restriction. Purthermore, one can also
rule out conditionally stable systems. This can easily be verified by
sketching a Nyquist diagram for type 1 or type 2 plants under the restric-
tion of audequate stability and one zero in G(s) D(s) H(s). Finally, the
worst case we can have, under these restrictions, is a type 2 plant, and
the only conceivable root loci meeting the requirements of adequate
stability are shown in figure 18. The root
loci here are for a fifth-order system; how- ‘;%
ever, the loci in the vieinity of the origin
(the dominant mode) will be approximately the
same regardless of the order. From figure 18
it can be seen that the response will become
less damped as the magnitude of the input is X
increased (see rule II, section 2.2). It
also seems reasonable that if the zero is
shifted closer toward the origin as the gain
of the limiter decreases, then one could
keep the poles nearest the origin from ever
becoming lightly damped. We can make the \
zero position shift closer toward the origin

as a function of the error. As a matter of Figure 18.- Root loci of
a type 2 system.
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fact the method described in section 2.6 does Jjust this if we choose K.
to be a nonlinear function of €. TFor a simple zero, the switching equa-
tion, that is, the equation determining the sign of x (fig. 1), can be
written, for step inputs, as Kce(t) +Kgé(t). If K decreases with
€(t), this causes the zero of the incremental model of the system to
shift toward the origin. The method, if carried through for any type 2
plant, will show that K. must be a decreasing function of € 1f the
first reversal time is to be maintained optimum.

Question 2 is now considered. It cannot be answered precisely,
although root-locus arguments give the following answer: "A function
of a single variable is sufficient in those examples where a change in
a single variable can shift the zeros, as a function of limiter gain,
in such a manner that all poles stay in a well-damped region of the s
plane as the limiter gain is decreased." The problem with this state-
ment is, of course, that one cannot adequately define the equivalent
gain of the limiter. At least two previous examples (ref. 5) and
several examples in chapter IV show that only the error gain need be
made a nonlinear function of the error if step inputs are considered.
Thus, it shall be assumed that making the zero positions change with
error is equivalent (for step inputs) to making the zeros change as a
function of the equivalent limiter gain.

To illustrate generally how one can get at least an approximate
idea of whether a single function of error is sufficient, consider the
following type 1 third-order system with G(s) H(s) D(s) having two
zeros. The root loci for the linear design is sketched in figure 19.
The points A represent the pole posi-
tions for one open loop, or equivalent
limiter gain of the system. It is

seen that this system is not dominant . 2 5 A
first order, unless the equivalent Linear operctlng

gain of the limiter i1s considerably poinf

less than that corresponding to the A

points A (letting the real pole move e - - %

close to the origin). Thus, one

could well expect that the transient

response will change quite markedly A
with the size of the step input,
becoming increasingly bad for a cer-
tain range of inputs. This result is
hypothesized, since the damping at
point A of the complex poles is very Figure 19.- Root loci of a
low, type 1 system.
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A vlock diagram for this system can be as shown in Tigure 20.%°

r(n+ e(f)’0252+a|$+aom(/)/X(/‘) 2 /;_cs ; o)

Figure 20.- Block diagram of a type 1 system.

The zero positions are given by equation (29).

a; tNa;2- baga, aj ao a2

S = - :——i'i —_— (29)
2ap 2ap 82  Lg,2
From equation (29) it can be seen thal decreasing a5 alone causes
the zeros of figure 19 to move in a dirceticon of constant real part and
decreasing imaginary part. ‘Whis, from root-locus reasoning, would appear

to be helpful. Similarly decreasing a; would cause the real parts Lo
decrease while the imaginary part increases. This does not appear to be
desirable. Increasing ap causes both real and imaginary parts to
change, and it is necessary to investigate the loci as a, changes to
see whether beneficlal results should be expected. The variation of ag
with e(t) is the simplest from a construction standpoint, and a design
based on a nonlinear function of € should be investigated first by
designing the nonlinearity and then by means of simulation. If simula-
tion studies show that neither variations of ay with error nor ag,
with error give satisfactory results, then one must change two of the
a's of figure 20 with error so that the loci of gzero positions move along
a path which keeps the closed-loop poles in a well-damped region of the
s ©plane. BSuch a path might be one which keeps the damping ratio of the
zeros constant.

In summarizing this section on limitations one can state that the
method, when used in conjunction with root locus and simulation, appears,
at least for step inputs, to be primarily limited by the ingenuity of
the designer. Its true drawbacks are that for successful results in
arbitrary order cases a large number of trial designs may have to be
simulated before a satisfactory design can be obtained.

5 , . .
For step inputs, output rate and output acceleration feedbacks
for this system give identical results as zeros in the error channel.
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2.8 Analysis and Design Methods for Sampled-Data Systems

The material presented thus far can almost be used for sampled-data
systems with the single substitution of the 2z plane wherever the s
plane has been used. There are, however, certain modifications necessary.
It is believed that these modifications are best described by taking up
the subjects presented in this chapter for continuous systems and showing
the modifications which are required for their application to sampled-
data systems.

2.8.1 Root locus.- The rules presented for continuous systems can
be used for sampled-data systems with the following modifications:

(1) The stability boundary in the =z plane is the unit circle.

(2) A1l poles of the plant should be in the principal strip® of
the s plane for the transformation 2z = eST,

(3) The poles of the digital computer pulse transfer function are
well damped. Point 3 is introduced here for reasons identical
to those which are discussed in section 2.2 (footnote 1); that
is, the poles must be well damped to prevent the output of the
limiter from being switched from one extreme to another when
the loop is essentially "opened up" by limiter action.

(4) since

T2
zZ = eST = 1+sT + (Z')

+ ... (30)

mapping in the vicinity of the origin (sT << 1) in the s
plane transforms into mapping in the =z plane around =z = 1.

2.8.2 Switch time method, analysis.- The technique to be applied
here 1s almost identical to that for the continuous system. In order to
give the reader some confidence in the technique as well as to introduce
the small differences in approach, an example will be worked out in
detail. The principal difference in apprcach is simply that we are now
dealing with a sampled-data system; thus, the output of the digital
computer can change only at discrete times.

lePrincipal strip means that the imaginary part of any complex
poles should be less than one half the sampling freguency, that is,
wpnN1-t2 <x/T. The implications of or necessity for this restriction
seem up to now not to be well understood. It is imposed so that there
is a one to one correspondence between positions of poles in the s
plane and positions of poles in the 2z plane.




33

Consider the block diagram of the system shown in figure 21.
~Ho(s)=  -Limiter= =G(s)~

) + -7\ mA| Y /x| V| elr)

._/{(5)_.

as+|

Figure 21.- Block diagram of an example sampled-data system.

Let us assume that T = 1 and that a "finite settling time" designl7
is desired for the linear region. To obtain such a design one writes the
characteristic equation of the closed-loop pulse transfer function in
general terms of the available parameters; the characteristic equation
in terms of a and Ke 1is

1+K.Z[Hy(s) G(s) H(s)] = ©
1-e=ST 1
l+KeZ< = aSSJZ“ >= 0 (31)
(la+(1/2)1z71-[a- (1/2)]z"2
l+Kei ( _~—U2 }— 0

(The symbol Z[F(s)] reads the 7 transform of F(s). The 7 +transform
of a function can be obtained by expending the Laplace transform in par-
tial fraction expansions and looking up individual terms in tables

(ref. 6).) The roots of equation (31) must all occur at z = O to give
a finite settling time design. Thus, the resultant equation in terms of

—2z+l+Kel:<a +%>z—< —%>:)=O (32)

J'7A finite settling time design can always be obtained using output
feedback derivatives provided that a sufficient number (order of the
system minus one) are used and a zero-order hold exists in the system
It can llkew1se be obtained using a D(z) (fig. 1(b)) with H(s) = 1.
The D(z) pulse transfer function for this example, however, has a very
lightly damped pole. This type example, that is, where D(z) has a
lightly damped pole cannot be treated by the methods used here.
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Since we only allow 2z = O then

!
no
+
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(33)
l-—(a - %) =0
or
(3%)
Ke = l
Of interest also is the pulse transfer function C(z)/R(z
c(z) _ KeZ [Hy(s) G(s) _ 1 21 4 1 g2 (35)
R(z) 1+XKeZI[Ho(s) G(s) ( 2 e

The unit pulse response given by equation (35) shows the output to
be zero at the end of the third sampling instant which simply proves a
finite settling time design has been achieved. Without saturation being
present (for small step inputs) the output will be at the desired value
of the step input in two sampling instants. This can be seen by writing
c(z) fgr a step input R(z) and expanding the result in a power series
of =z .

It is also desirable to consider the output of the limiter, x(t),
for a step input Rgu(t)

X(s) Z{KeHq(s)] _ L —1y2
Z[ (S)J 1+ Z(KeHo(s) G(s) H(s)] (1-279) (36)

For r(t) = Rou(t) then R(z) = Ry/1- z”1; thus for a step of R,
magnitude

A%
X(z) = Ro(1L-277%) (37) x(1)
As one can recognize from egua~ O"" - I_ _E'_
tion (37), for a step input, Ry, x(t)
has a wave form as shown in figure 22,

Since x = ¢, this motion agrees with
what we know about controlling second- Figure 22.- Plant input, x(t),
order plants with limited acceleration; for a step input, Rou(t)
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namely, that to move from one point to another one applies acceleration
half the time and deceleration the other half. It can be recognized that
if Ry 1s greater than one unit, saturation must take place, and then a
greater number of sampling instants will be required in order that the
error be reduced to zero. This is the principal difference in the way we
shall treat sampled-data systems over continuous systems, that is, the
first reversal time can only vary in discrete increments of T seconds
(1 second for this example).

The curve for the first reversal time as a function of the input
will now be derived. For inputs smaller than 1 unit it will be 1 second.
For inputs greater than 1 unit saturation takes place, effectively "open-
ing the loop" and allowing one to write the equation for M(z) in a power
series expression in terms of =z~ 1. With reference to figure 21 letting
Ke =1, a = 3/2, and x(t) = u(t) gives

il

M(z) = —Fo_ _ ZA+_1_'2>

o0 0 r o _|
\' (aT
= Ro ;jz—n - ) I(Ai}' + 1.5nT 1277 ) (38)
=0 WA;J‘ = -

1]
[>8
| D
&
1
ro|
e
|
]_J
\J
&
|
N
]

Equation (38) is written in infinite series form to allow one to pick
out the sampling instant and the size of the step input when m(t)
reverses from +1 to -1L. For this example Y 1is unily, so it is guite
easy to derive a curve of T, versus Ry from equation (38). For
example, for n = 2 we have the equation

-1 >Ro-2-3 or Ry <h (39)

Similarly for n =3

—1>RO-%—%— or R, <8 (ko)

There is a range of inputs at a given value of n in which m(nT) is
larger than -1 but less than +1. This range will be dotted on the switch
time curve. Thus, for a first reversal time of n = 3 one obtains the
range of Ry as 6 <Ry <8, with a dotted line connecting the points

Ty =2, Rog = band Ty = 3, Ry = 6.
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The first reversal time of this system is shown with the optimum
(for a continuous system, eq. (4)) in figure 23.
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Input step magnitude, /7,

Figure 23.- Actual and optimum first reversal times for example system.

Now the same hypothesis is true for sampled-data systems as was true
for continuous systems, that is, if the first reversal time, T,, is
greater than the optimum, then overshoot must exist if the bounded vari-
able is saturated (see section 2.4). With reference to figure 22 it can
be seen for Ry less than unity, the sampled-data system is linear, and,
therefore, the first reversal time can be longer than the optimum for the
range of inputs O < Ry < 1. For inputs greater than unity, reference to
figure 23 shows that serious overshoot should not be expected for inputs
less than approximately 5. This hypothesis is confirmed by the step
responses for this system presented in figure 2k.

0TE~v

80 /
< 40 / N /
= — ~—1
S~N—— .
|
o) 10; 20 30 40 50

Time, sec
Figure 24.- Step responses of example system.
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By comparing figures 24 and 23 one can see that the switch time
curves can be used for sampled-data systems as well as for continuous
systems. For example, for an input of 10 units the first reversal curve
shows that the output should overshoot to 16 units. In other words, the
actual reversal time for an input of 10 units is equal to the optimum
reversal time for an input of 16 units. To obtain this number, one reads
the abscissa of the optimum curve for the ordinate corresponding to an
input of 10 units for the actual curve. The simulator results show the
overshoot to be very close to 16 units for this input. Likewise, the
overshoot of the response gets larger as the size of the input is
increased as the switch time analysis method demonstrates.

2.8.3 Calculation of response times.- The method for calculation
of the response times follows that previously described for continuous
systems. Due to the fact that the system is sampled, the approximations
make the calculated results less accurate than for the continuous case.
Two examples are shown in chapter IV to allow the reader to obtain an
idea of the accuracy of this method.

2.8.4 Calculation of nonlinear functions.- Figure 23 showed that
the example system must overshoot. The simulator results of figure 2k
demonstrate this overshoot and the poor response of the system for large
step inputs. It ic thus assumed that one should design compensating,
nonlinear functions. We shall now investigate how this can be accom-
plished. The method is identical to that described in section 2.6 except
that reversal of the saturated varieble can take place only at discrete
increments of time. This constraint forces one to take an approximation
to the optimum first reversal curve. This approximation is shown in
figure 25. This is only one approximation which could be used. One

-

Optimum . ——

Approximatign Z'Z
/
2

\\

First reversal time, 7 , sec

o

20 40 60 80 100
Input step magnitude, A,

Figure 25.~ Approximation to optimum first reversal
curve for example system.
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could design for overshoot or undershoot by shifting the staircase shaped
curve upward or downward, respectively. The approximation taken here
allows both a small amount of overshoot as well as undershoot, distributed
in & manner which should give near optimum response for the sampled-data
system.

If one assumes the approximation shown in figure 25 is satisfactory,
then the problem is to determine a nonlinear function which will give
this first reversal curve. First one writes the equation for the input
to the limiter for step inputs large enough to cause saturation. For
this example the 7 transform equation is (with reference to fig. 21)

Zm(nmz~n _ Z{Ke[RO_ o(aT)] - Kead(nT)}z2 (41)
n=o0 n=0

In this equation every quantity is known up to the first reversal time.
For example, c(nT) = (nT)2/2! ; c(nT) = nT ; Ro(nT) is obtained from fig-
ure 25 (RO is the maximum value obtained for any sampling time); and
m(nT) = -1. Thus, we must generate a nonlinear function so that this
equation is satisfied for all values

of nT. For the example here it will

be assumed that the nonlinear func- 60
tion Kg(¢) is desired. Thus, assume
that Ke = 1 and a = 3/2 (in the

linear region), rewrite equation (41)

and solve for ac¢(nT) to obtain

(nT)®
2!

ac¢(nT) = Ry - +1 = fle(t)] £(8)

(L2) /
20 /

One point on the curve of f[c(t)] ////

is for n =3 and Ry = 11.5. These

values substituted in equation (42)

give fla(t)] = 8 for &(t) = 3. The /

desired curve obtained by taking all L/

values of n din the range of

interest is shown in figure 26. 0 4 8

This is half of a symmetrical curve Output velocity, ¢

with respect to the origin for

reasons mentioned in footnote 12,

chapter II. Figure 26.- Nonlinear function for
example system.
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The benefits gained by introducing the designed nonlinearity into
the system can be observed by comparing the previous results for a
linear controller shown in figure 24 with the step responses shown in
figure 27 which are for the nonlinear controller.

80

| L

O 10 20 30 40 50
T

TH2 om e mm N7 < - L S
Figure 27.- Step responses of modified system.

2.8.5 Discussion.- The example worked out in this section shows
that the switch time method gives good results when applied to sampled-
data systems. There are, of course, more approximations involved than
in the continuous case.

The limitations of the method appear to be the same as in the case
of continuous systems. In this case alsc one can probably combine root-
locus techniques in the =z plane with the switch time method to give
reasonably powerful tools for the treatment of systems of any order.

The best success will probably be attained when the sampling
frequency 1s high compared to the dominant modes of the continuous
system from which the sampled-data system is derived (see ref. 8). One
is then treating an almost continuous system, and, consequently, methods
based on continuous system design practices will give very nearly the
same results as their continuous system counterpart.
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III. DERIVATION OF THE OPTIMUM RESPONSE

3.1 Introduction

The previous chapter demonstrated that the switch time method is
quite useful for the analysis of linear controllers which control a
plant whose input is limited. The method also has been shown to provide
a synthesis technique for determining nonlinear controllers which pro-
vide near optimum response when large step inputs are applied to the
feedback control system. The application of both the propesed analysis
and synthesis methods requires so-called optimum curves which give the
first reversal time of the saturated quantity and the minimum response
time of the system as a function of the input step magnitude. It is the
purpose of this chapter to derive these optimum curves for the plants
given in table I in normalized form so they may be used for any saturated
control system, provided the "linear" design meets the restrictions
imposed in chapter IT.

In order to derive the optimum response curves, it is convenient to
use the concept of an entire function.! A theorem is given in the fol-
lowing section and then succeeding sections are devoted to using it to
derive the optimum response curves.

3.2 A Theorem on the Laplace Transform of a
Truncated Time Signal

Theorem: If a Laplace transformable function of time, f(t), is
truncated (i.e., fp(t) = O for a >t > b where £p(t) is the truncated
time signal), then the Laplace transform of fip(t), L{fp(t)] is an entire
function.

Proof: A complete proof of this theorem is available by applying
theorems 95-98 of Titchmarsh (ref. 14). The only characteristic of the
entire function that will be needed here is that it has no poles; that
is, Fp(s) is bounded in the finite portion of the s plane. We shall
prove this one characteristic about PFp(s) because the proof is short
and will give the reader confidence in the application made later.

00 b
Lifp(t)] = Fp(s) =f fT(t)e'STd_t =f fT(t)e'Stdt (%3)

o}

IAn entire function is regular in the entire finite s plane (see
ref. 13, for example).
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The limits on the integral may be changed since fT(t) =0 for a>t > b.

It is assumed that a and b are both positive numbers. One now expands
the exponential in an infinite series giving

n b
Fp(s) = Z (=) L fp(t)that (h4)

n!
n=0

Assume that fT(t) <M where M is some finite number. Then,

N @S)n ® Na, _ N (-s)™ <Fn+1_an+1
IFr_p(s)ISMz — fatdt—MZ ~ — > (45)
n=0 =0

By multiplying inside the summation sign by -s and outside by l/—s,
one obtains

= n+r 2 n+1
~bs -as
lFT(S) <M z_(_)__z(__l__ (46)
-s (n+1)! (n+1)!
n=0C n=0
The right-hand side of equation (46) can be cxpressed in closed form,

giving

s

|Fp(s) | < - b—: l:(e'bs-l) - (e'as-l):I = -M <££> (47)

Since the function of s given in equation (47) is finite in the finite
portion of the s plane, Fp(s) is bounded.

3.3 A Method for Deriving the Optimum Response

The theorem of section 3.2 can be used to advantage in deriving the
optimum response if further information regarding the shape of x(t),

the bounded variable, is attainable. Consider figure 1 for r(t) = Rou(t)

and zero initial conditions. Then

n

1

>
—

0
~—

(]
—~

[ 6]
~—

Lle(t)] = E(s) (48)

A necessary but not a sufficient condition if we are to attain the

optimum is that E(s) must be an entire function because €(t) =0

for t < O and we desire €(t) = O for t > Ty. In other words, the
desired e(t) is a truncated time signal. In order to meet the
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sufficiency condition one must know the optimum shape of x(t) in
general terms of unknown reversal times. One then derives X(s) and
determines the relationship between these unknown reversal times and Rg
by forcing equation (48) to be an entire function.

The general shape of x(t) for the minimum response time can be
found by either (1) inspection, or (2) by use of a theorem proved by
Bellman, Glicksberg, and Gross (ref. L4) for the conditions for which it
applies. The theorem applied to thls problem states that in order to
have a minimum response time to an input step x(t) should be at its
maximum value plus or minus throughout the response, the maximum number
of reversals being equal to n-1 where n 1s the order of the system.

The proof, however, is only for G(s) having real, distinct, and nega-
tive roots. It is shown later that if one confines his interest to
plants having only poles in the left half plane or at s = O and is
interested only in responses to step inputs, the theorem gives a suffi-
cient number of reversals of x(%t) in order to restore the error and its
derivatives to zero in a finite time, that is, to allow E(s) given by
equation (48) to be an entire function. As will be demonstrated, the
response time obtained by using this number of reversals may not be the
minimum for plants with lightly damped complex poles. It will also be
shown here that if zeros exist in G(s) then one does not want the bounded
variable, x(t), to be at its maximum throughout the entire response, that
is, until the time when all the states of the system are restored to zero
or a constant.

The steps involved in obtaining the optimum responses are summarized
below.

(1) Determine x(t) in terms of the unknown switch times for
the optimum response. This function will be the limit level times
a sum of delayed steps for G(s) having only poles. The delay
times will be written as undetermined coefficients.

(2) Determine X(s) from x(t).

(3) Use the fact that the error transform must be an entire
function to obtain algebraic or transcendental equations relating
Ro and the unknowns of x(t).

(4) Solve the equations of step (3) to obtain the optimum
first reversal time and the minimum response time as functions of
the input step magnitude Rg.
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3.4 A Type 1 First-Order Plant

For this example, G(s) = K/s.
Considering figure 1, we see that +5
X = ¢/K. Thus, in order for ¢ to
move from zero to Rp, in the minimum x(1)
time, one simply uses the maximum
value of x(%), which provides the 1 —7Im
maximum value of the output velocity,
¢(t), until ¢ = R, and then Figure 28.~ Optimum motion of the
restores x 1o zero. The motion input, x(t), for a type 1
of x 1is shown in figure 28. This first-order plant.

example is so simple that the answer

relating Tp and Rp can be written by inspection of figure 28; however,
we will go through the steps of section 3.3 to familiarize the reader
with the technique. The steps are as follows:

x(t) = Blu(t) - u(t-Tp)] (49)
VAN ULTAN

X(s) = B Kf-cs (20)

E(s) = % - BK <l‘—:;iTE> (51)

Since E(s) must be an entire function, then

E(s)

5=0

Rys-BK <}-e'STﬁ>

S=0

thus

(52)

f
olo

Differentiating the numerator and the denominator with regpect to s
gives




Lh

R, -BK (Tme'STm>
- Zo=Pm (53)
2s 8=0 0
Differentiating additional times 4
provides no more information. In
order that equation (52) be entire
then, the numerator of equation (53)
t D 1
mus e equal to zero or Zh,sec
2
Ry = BKTp (5k)
Equation (54) can readily be solved
for T, and the curve showing
Ro/KB vs. T can be plotted. This
result is given in figure 29. For O 2 4
this simple example Tp 1is both the /'?//(B
minimum response time and optimum 0
first reversal time, T,. Figure 29.- Minimum response

time for a type 1 first-
order plant.

3.5 A Type 1 Second-Order Plant

For this example, G(s) = K(11s+1)/s(72s5+1) and we have allowed
a zero to exist in the plant transfer function. The problem is to deter-
mine the optimum motion of x(t) in order to reduce e(t) to zero in a
minimum time. The solution to this problem can be found most conveniently
by expanding G(s) by the partial fraction expansion and constructing a
block diagram in terms of the components as shown in figure 30.

K
3
jB/' x(7)
-8B
K(7-p)
1'25+I

Figure 30.- Block diagram of g type 1 second-order plant.

01E-v
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It should be obvious from inspection of figure 30, that if x = 4B
and y,(0) = yo(0) = 0, then yo(t) either aids (13 > 7o) or hinders
(T1 < 7o) c(t) in reaching Rp in the minimum time. Regardless of
whether yo(t) aids or hinders, any positive value of 3 will allow
c(t) to reach Ry in a shorter time than if T; = O. Thus, a zero (in
the left half plane) can speed up the response if one can find a motion
of x(t) which will allow c(t) to remain at Ry, while y,(t) and yo(t)
change. This motion of x(t) can most conveniently be determined by
solving for the x(t) which causes c(t) to jump to a constant and remain
there.

For c(t) to jump to a constant value, C,, then

X(s) G(s) = - (55)
or
o 1 C o5+
X(s) = - [G(s)] hde] <Tls+;> (56)
and
x(4) = L7Yx(s)] =20 ™2 g0¢) 4 i“’_l‘"r_2) e~t/T1 (57)
K T1 'T12

The & function simply puts an initial condition on y;(t) and yo(t) of
figure 30 and from then on, y,(t) and yo(t) vary as c(t) remains constant.
The motions are shown in figure 31.

A (1) A0 c(r)

Time Time Time Time
Figure 31.- Time histories for example system.

If x(t) is bounded, & functions cannot be permitted. However,
if the maximum value of x(t) is applied, y,(t) and yo(t) will arrive
at values in a finite time which will give yi1(t) + yao(t) = c(t)
If x(t) is forced to have the decaying exponential motion of figure 31,
v1(t) and yo(t) can change while c¢(t) remains at R,. The optimum
motion of x(t) will change as the ratio of Tg/Tl changes as well as
when the size of the input changes. A little physical reasoning, how-
ever, should make it clear that x(t) can only be one of the two forms
shown in figure 32. Figure 32(a) is in general terms and so long
as |b| < B, the responses will be valid. With b =0, the results
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+B 2l /b[‘/(’“rm)]e( ! L"ﬁ*
By A ~—Im N
-8B \\ _(/_%)
—B[u(f—7,'n)]e T

(a) (b)

Figure 32.- Optimum motion of the input, x(t), for a type 1
second-order plant.

correspond to the condition for +T5 = T1, which reduces the plant to the
first-order case; b will be positive for T3 > To and negative for

Ty < To. If 731 1is considerably smaller than T5, b will gradually
increase in the negative direction as the size of the input step is
increased until b = -B, then the solution of figure 32(b) is used for
larger inputs. Figure 32(b) is in general terms and for 7, = 0, it
gives the bang-bang solution expected for a second-order system with no
Zeros.

One thus proceeds to write the Laplace transform of the x(t) motions
shown in figure 32 and then, by forcing E(s) to be an entire function,
finds the relationships between R, and the undetermined coefficients b
Tm) and Tl'

s

Considering x(t) as shown in figure 32(a)

(52

x(t) = B| u(t) - ult-Ty) + % u(t-Tp)e (58)
-7 -
x(s) = ("™, be S (59)
s B
5 + —




T

s
< (s L1 s(Tos+1)
Ty,

E(s)

R <l ) (o )+ (F) e [t

(60)

NS

- bris -
Ros(T2s+1) -BK [(:-e STﬁ> (T1s+1) + _Jg;.e STm]

s2(Tos+l)

)

There are two potential singularities of E(s) indicated in equation (60),

a second-order one at s = 0, and a first-order one at s = -1/15. At
both these potential singularities, E(s) must be finite in order to be
entire. Thus evaluating E(s) first at s = -1/72 gives
, BK [(l eTm/T%></ Ti) (é > Tm/Tg}
T2
w(s)) - @ (61)
| s = -l/Tz

The numerator of equation (61) must therefore be zero, giving

(YD @D @

Differentiating the numerator and the denominator of equation (60) will
show E(s) is finite at s = -1/7t5 if equation (62) is satisfied.

One next finds the relationship required to force E(s) to be finite
at s = 0.

E(s)

0
=2 (63)

8=0

Evaluating the O/O by differentiating the numerator and denominator of
equation (60) with respect to s gives

b
Ro-BK (‘I‘m + %)

- - (64)

E(s)

s=0
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And again, since E(s) must be entire

—_— = m""‘E" (65)

Rewriting equation (62), solved for b/B, gives

M COEAVICES “

The desired solution is obtained by solving equations (65) and (66) under
the constraint that |b/B| £ 1. Thus, it can be seen from equation (66)
that if To/71 £ 2, the solution is always valid. For To/T1 > 2, the
soluticon is valid for Ty less than or equal to the value that gives
|b/B| =1 in equation (66). For larger values of Tp, one must use the
form of x(t) given by figure 32(b) which is now considered.

With reference to figure 32(Db)

(52)
x(t) = B |u(t) - 2u(t-T1) + u(t-Tp) - u(t-Tp)e ~ % (67)
-sTy ~-sTp =5Tpy
1-2e +e Tai€
X(s) = B . ey (68)
<é-2e-STl+e-STﬁ> (Tls+l)—Tlse-STm
E(S) = 59 - BK

s s2(Tos+l)

(69)

~

Ros(Tos+1)-BK [( _0e~5T1, 5T (Tls+l)—71se-STm1

s2(Tos+1)

Forcing E(s) to be an entire function in the same manner as was done
previously gives

2T1 - Tm - Ty = -1}2 (70)
KB




<#-2eT1/T2+eTm/Té> <} - Ii) + <;i> eTm/Tz =0
T2 T2

Equation (71) can be
The results are

solved for T;

k9

(71)

in terms of Ty or vice versa.

T/ T
T m/ T2
-3 _ in E + € (72)
To 2 T3
2 - —
T2
T T
I gn|oeTa/T2 (1 J 1) L (1o 12 (73)
T2 To T2

The solutions of (70) and (71) are only valid for |b/Bl of equation (66)

greater than unity.

The solutions Tor this plan
(66), (70), and (71).
convenient to normalize with respect to
values of the ratio T;/7o.
and 3.4.

small values of Ry/KBTz sO long as

e m e T - T . A~
were computed by means of equations {(69)

As can be recognized from the equations, it is

To and plot results for various

These results are presented in figures 33
One should note again in using these results that T, = T for
Ty, has any value whatsoever.

20

o E“H* g
™ | T I 4 111
= hiE . 0.00 4T 1~

H s - V. LR
g 15H T2 25 N
= 50 {15,
—_ [ 117
a T 1
§ 4
e 10
2 |
I & LT 1.00
3 S5H NTYT2.00
€ - 13.00
S [ - -5.00
4 11T

§ags :

| [
0 2 4 6 8 i0 12 14 16
Normolized step input magnitude, Fo
KBTz

Figure 33.- Optimum first reversal time for a type 1 second-order plant.
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e(t) to be reduced to zero in

Rou(t) and zero initial conditions must be

is greater than 1, a simple intuitive argument suf-

2fs
“n

a2
+
This argument is facilitated by

wnE

S<
in order for

)

Normalized step input magnitude
3.6 A Type 1 Third-Order Rlant

If ¢
fices to show that x(t) should be at its maximum all the time and that

A congiderable imprcvement in minimum response time can be achieved
the number of reversals is two.

if the zero is much closer to the origin than the pole.
The plant transfer function for this example is

Figure 34.- Minimum response time for a type 1 second-order plant.
The optimum motion of x(t
considering the block diagram of figure 35.

a minimum time with r(t)

found first.
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+8 (1) K clh) | 1 4%
_/4{2; _s2 25, s

Rolutr]  Z-e(n

+

Figure 35.- Block diagram of a type 1 third-order plant.

The problem is to force c(t) to move to a value of R, and arrive
there with ¢ = ¢ = 0. To have the minimum response time we desire
T
m
J[ ¢ dt to be a maximum with the constraint that
o

To force ¢(t) to obtain a maximum value it secms cbvious that x should
have its maximum value initially and hold that value as long as permis-
sible, since for x =B, ¢ asymptotlcally approaches +KB. We may then
use the theorem of reference Y on ¢ since we want it to be restored
from initial conditions to zero in a minimum time. This says then that
the optimum motion of x(t) should

be as shown in figure 36. If ¢ 5

is less than 1, intuition still (/) T

tells us that this is a reasonable T | 7z ———
motion of x. Experiments were _£;£j7 2 :
conducted with an analog computer %, Tm -

which verified that two reversals

are sufficient and furthermore Figure 36.- Optimum motion of the
indicated the motion pictured in input, x(t), for a type l third-
figure 36 appeared to be optimum order plant.

except perhaps for low values

of {. We shall assume that this represents the optimum motion for all
values of { which are positive and proceed to find the relationships
between Ry, €, wy, Ty, and Ty 1n the same manner used previously.

x(t) = Blu(t) - 2u(t-Ty) + 2u(t-Tz) - u(t-Ty)] ()

Solving for the L[x(t)], using equation (48) to obtain E(s), and
forcing E(s) to be an entire function gives the following equations:
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V@ F)n, AT (D

(75)

1 - 2e

2Ty -~ 2Tp + Ty = % (76)

Note that there are two equations given in (75), one for the positive
sign and one for the negative; thus, for any fixed value of RO/KB, there
are three equations for three unknowns. These equations are best normal-
ized by plotting w,T; and w,Tp vs. (Ro/KB)wy for various values of (.

The solution of equations (75) and (76) can only be obtained by some
iterative process. This was accomplished here by setting up an iterative
procedure on a digital computer. The results of the calculations are
shown in figures 37 and 38.

20
N £=5.0 ;
3 3.0
g 15 2.0 I Z=2
= 1.5 PR
F 1.0 :
5 ~
?
20
I
g T
s H
g .75
5 .50
3 .25
:
eSS Summm -10
0 2 4 6 8 I0 12 14 16

Fow
Normalized step input magnitude, /\93”

Figure 37.- Optimum first reversal time for a type 1 third-order plant.
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Figure 38.- Minimum response time for a type 1 third-order plant.

Included also in table II are the points of the curves near the origin
where, because of the scale chosen, it is difficult to read the curves
to any degree of accuracy.

Table II.~ Optimum reversal times for a type 1 third-order plant

R R

wT1 |wnTm | 32 @ ¢ {lwnTa| nTm| 33 “n ¢
0.5 |[1.7k2]0.1719 0.5 |1.328[0.06379
1.0 |2.895} .81L43 :}0.1 1.0 |2.217] .254kL :}1.5
1.5 |3.717[1.704 1.5 |2.973] .5252

5 |1.661) 1475 .5 [1.262) .05509
1.0 |2.726| .6662 :} 2501 1.0 |2.156] 201k :}2.0
1.5 |[3.484}1.370 1.5 |2.946] .4209

5 |1.556] .1186 .5 |1.1961 .03078
1.0 [2.536{ .5080 }-.50 1.0 ]2.094| .1423 }3.0
1.5 {3.256[1.035 1.5 {2.926) .3113

.5 |1.h77| .09866 .5 [1.130| .009403
1.0 |2.411} .4086 }-.75 1.0 |2.038| .101k4 .}5.0
1.5 [3.127{ .8325 1.5 [2.930| .2102
1.049f2.401) .3718 1.00
2.098]3.800(1.192 :




54

As can be noted from figures 37 and 38, the first reversal time and -

minimum response time decrease for decreasing values of (. However,

for ¢ = 0.1 the curves become quite oscillatory and for certain ranges

of step input the optimum times are larger for { = 0.1 than for ¢{ = 0.25.
This suggests that for low values of ¢ a larger number of reversals of
the bounded variable may be necessary to obtain the minimum response time
for certain ranges of the step input magnitude. For a different treatise
on this third-order plant transfer function see Fliigge-Lotz and Ishikawa
(ref. 15).

3.6.1 Asymptotic solution for very large inputs.- The data presented
in figures 37 and 38 were obtained by an iterative procedure on a digital
computer. To extend this data to larger values one would need to use
this same iterative procedure again unless a short cut 1s possible. It
is the purpose here then to derive the asymptotic solution of equations
(75) and (76) which is valid for large inputs. This asymptotic solution
is sufficiently accurate for inputs in excess of those values shown in
figures 37 and 38 to allow it to be used should an extension of the curves
be necessary.

For large inputs one can see from previous arguments that large
values of T, of figure 36 will be required. As was mentioned with
reference to figure 35, ¢ is bounded. As a matter of fact, when x 1is
equal to +B and so long as ¢ > 0, ¢ will gradually approach KB and ¢
will approach zero. With reference to figure 36 it can be recognized
that Tp-T, and T5-T; will approach constants as T; — ©.2 The time
required for & to reach its steady-state value (or at least within a
few percent of it) can be obtained from the step responses for a second-
order system given in figure 39. For example, when { = 0.9, & will
reach its steady-state value (for all practical purposes) if the first
reversal time, Ty, is greater than 2m/w,, that is, Ty > 2x/wy.

In this example for large inputs Tp-T; and To-Ty approach
constants which are a function of the damping ratio and natural fre-
quency. Multiplying equation (76) by w, and rewriting it in terms
of Ty-T1, To-T1, and T; gives

Ro
X5 Wn

]

wnTy - w2(To-T1) + (Tp=T1)wy (17)

w,T1 = 2T, % + 7% (78)

See reference 15 for a good visualization of this statement.
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Figure 39.- Step responses of a second-order system.

where T1% = (To-T1)w, and To* = (Tp-Ti)w,. To solve for Ti* and Tp*
it is convenient to use a partial fraction expansion of the original
system and define state variables y.(t), y=(t), and ya(t) as shown in
figure L4O.

X . K(ﬂ
2 Wn
G(s) = K :=§ + - + . (79)
DY~ =) 2F o
S<_s_2_+C§D+]_> _S.:+.i: 1 _S_2+:£E+]_
wp2 W wp2  “n wn® “n
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Figure LO.- Block diagram of a type 1 third-order plant.
From figure L0 it can be recognized that if T, 1is large enough, then
yo(t) = 0 at T; and must also be zero at Tp. We can re-define the
time axis in terms of +t-T; and let
t - Ty = t*

To - T = 1%

T, - Ty = to*

Then deriving x(t*) and L[x(t*)] one can now force L{yo(t%)] to be
an entire function since yo(t*) is truncated in the range O < t* < to¥

-gt1*  ~sto*
-2 -
Llya(t%)] = 228 =2 (80)
5 2ls
57y =22 4

wp? Wy

In terms of the normalized times, T;* = wyt:* and To* = wpty™, the fact
that equation (80) must be an entire function gives

(@JF)TJ* _ e<CiJCT>T2* .

-2 + 2e (81)
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*
1

and the results are plotted in figure 41.

These two equations (8l) were solved by trial and error methods for T

and Tg*

as a function of ¢

.

0 and

1 one must differentiate equation (80) with respect to

to solve for the transcendental equations.

One should note that the initial assumptions are invalid for ¢

that for ¢

X

This differentiation is neces-

sary because the two poles of the transfer function are not distinct

for ¢

= 1.
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Figure 41.- Normalized dats for asymptotic solutions.

One can thus use the results of figure 41 placed in equation (78)

greater than those given previously.

Ty, for values of R,

to find Ry vs.
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Since w,Ty = wn[Ty + (T2¥/w,) ], the equation relating T, and R,
is (from eq. (78))

R
-K_; Wy = wpTy - 2Ty% (82)

3.7 A Type 2 Second-Order Plant

For this example G(s) = K/SZ. The optimum response curves were
derived in chapter II by a simple area integration. One can also obtain
them using the entire function concept. Only the results given by
equations (83) and (84) and in figure 42 are presented.

Ty = N/E% (83)

(54
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Figure 42.- Optimum switching times for a type 2 second-order plant.
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3.8 A Type 2 Third-Order Plant

For this example G(s) = K(715+1)/s2(72s+1). One can determine the
optimum motions of x(t) by arguments similar to those of section 3.5.
The two possible motions of x(t) are shown in figure 43.

-7
_( rm) ‘(f—%)
: blutr-Tmlle* T 8 [u(r-Trnle T,
2 N T ,’/ +6 — 7 — /’
& 0 pn— AN xng 17 I
< = 1 2 .
_x- —7;
* m —{—
(a) (b)
Figure 43.- Optimum motion of the plant input, x(t), for a
type 2 third-order plant.
The solutions using x(t) of the form shown in Tigure 43(a) will be valid
. so long as [b/B] £ 1. For b = O the solution will correspond to
Ty = Tp which is given in section 3.7. If |b/B| > 1 in this solution,
then the results are invalid and one must use the solution obtained
for x(t) of the form shown in figure 43(b).
If x(t) is as shown in figure 43(a) then
-(52)
b T1
x(t) = B u(t) - 2u(t-T1) + u(t-Ty) + 3 u(t-Tp)e (85)
-sT -sT ~-sT
1-2 1 M prye 70
X(s) = B R + =2 } (86)
S B(T15+1)
and E(s) = (Ry/s) - X(s) G(s) which for this example, after some
manipulation, becomes
) Ros2(Tos+l) -BK [<1-2e_STl+e-STﬁ> (Tls+l)+(b/B)Tlse'STm]
E(S) = (87)

. s3(Tos+1)
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Since E(s) must be entire, E(s)l and E(s)' must be finite.
8=0 S=-1/T2

Equations (88), (89), and (90) give the relationship between the param-
eters which force E(s) to be an entire function.

<l—2eT1/T2+eTm/Tz> <l - 1) - b eTm'/T2 =0 (88)
To B 712
b
2Ty - Tm + 3 0 (69)
b 2R
21y (2M1-Tn) - 2T2% + T - 2 2 iy = —2 (50)

These equations in thelr present form are not usable. One can through
mathematical manipulations obtain a form suitable for calculation. From
equation (88)

> [e-Tm/Tg_Ee(Tl-Tm)/T2+l] <?g ] i) (91) '

T1

Solving for b/B in equation (89) and putting the result in equation (91)
gives

2Ty - Ty = [e'Tm/Tz-ze(Tl'Tm)/T2+1} (T1-72) (92)

let

2Ty - Tp = t* (93)

then

T1-T2) + (T1-T2) (9k)

b - [e(t*-eTl)/Tg_ge<t*-Tl)/Tz} (

One now adds and subtracts a term to allow for the completion of the
square

t* = ot'/72 <§—2T1/T2—26—T1/T2+i> (t1-72) + (71-T2) l-et*/Té> (95)

and changes terms around to give

0TE-V
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*
¥4 (1o-T1) l-et /Té>

<e-T1/Ta-1>2 - (96)

t*/T
€ / 2(T1'T2)

or

*
TR
o~T1/T2 _ T2 T2

1- (97)

et/T2 <;l - i)
T2

The negative sign must be used since for positive T; the left-hand
side of equation (97) is less than unity. Finally

* *
=, <1 - _T_l> <l—et /T2>
To T2

T ,
2 et*/TZ <:|-—l _ l)

—

T2

Now reviewing the definition of +t* (eq. (93)) and comparing with equa-

tion (89) shows t* = -(b/B)T, or normalizing with respect to 7o
t* b Ty
=" " BTa (99)

Since |b/B| £ 1, one can use equation (99) to determine the maximum
value of t*/Tg permissible for any given ratio of Tl/TZ. A little
further thought and study of figure 43(a) allows one to determine the
sign of t*¥ as follows:

If T3 = 72, t*¥ = O since b/B must be zero.

If 71 > 1o, b/B must be negative .. t*¥ is positive.

If T, < Tz, b/B must be positive .. t* is negative.

Equation (90) can be normalized by dividing by 752 giving
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T

B

(100)

2R; 2T <%T1 > 5 (% > <?ﬁ>
KBT52 T2 T2 T2

One can thus compute curves relating normalized T; and T, versus
the normalized input magnitude, Ry, for various values of the ratio
Tl/Tz. The procedure is to determine the range of permissible values
and the sign of t*/Tg. Then one sets up a table for t*/Tg in this
range and uses equation (98) to obtain Tl/Tg} Tm/T2 can be obtained
from equation (93). These values are then used in equation (100) to find
the normalized R,.

Uﬂo"

Tl
T

=1

2

Equation (91) shows that so long as 1o/t < 2 then |b/B| £ 1. For
values of Tg/Tl greater than 2 one can use the above solution until
[b/B| = 1, and then one must use the solution for the x(t) motion given
in figure 43(b). This motion is now considered.

If x(t) is as shown in figure 43(b) then

- (4

x(£) =Bl u(t) - 2u(t-Ty) + 2u(t-Ts) - u(t-Ty) + u(t-Tp)e
(101)
-8Tq ~sTs =-sTn -sTm
1- -
X(s) =B 2e +2e e + T1€ (102)
s T15+1
and E(s), after some manipulation, is given by
-sT -sT -sT ~sT
Ros2(Tos+1) -KB [(?—2e lpe 2 " m> (T1s+1)+T45€ m}
E(s) =
s> (Tos+1)
(103)
The relationships between the quantities which make E(s) an entire
function are
afy 2fz  Im  T1 _ 4 (10L)

T2 T2 T2 Ta

NORECORCOROREER-

(105)
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<l—2€T1/ T2, 5,72/ T2> (1 - %) _ /T2 (106)
2

One can eliminate T, from equations (104) and (106) and after certain
manipulations obtain the following:

(F )| (-3) /<-—> <>< 2 5

(107)

One computes the results by first assuming Tl/T2 and then solving
equation (107) for Ts/Ts. One then uses equation (104) to obtain Tp/To
and equation (105) to obtain Ry/KBT22. One should note again that these
results are only for Tg/Tl > 2 and represent only part of the solution.
They must be pieced together with the previous solution given by equa-
tions (93), (98), (99), and (100).

The optimum first reversal time, T;, and minimum response time, T,
versus the input step magnitude, Ry, are given in normalized form in
figures 4L and 45. As can be noted from figure 45, a considerable reduc-
tion in response time is possible if the zero is closer to the origin
than to the pole that is, if 'Tl/'Tg > 1.
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Figure 44.- Optimum first reversal time for a type 2 third-order plant.
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Figure 45.- Minimum response time for a type 2 third-order plant.
3.9 A Type 2 Fourth-Order Plant

For this example

K

2 2
s2 —EE + —EE + i>
Wn Wn

According to the theorem of reference L and arguments following lines
presented previously (see sec. 3.6) x(t) will have three reversals. The
general motion is given by

x(t) = Blu(t) - 2u(t-T1) + 2u(t-Ts) - 2u(t-Tg) + u(t-Tm)] (108)

The same procedure can be followed through as was done in previous
examples, and in order that E(s) be entire, the following equations
must be satisfied
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Wy (Ci JeE- ) Ty wn <c~: Je2- > To wy (ct N > Ts
+ 2e - Qe +

1l - 2e

wn<Ci«/E2_-—>Tm

=0 (109)
2T, «- 2T + 2T - Tm =0 (llO)

2 2 2 2 _ 2Ro
2717 + 2Tx° - 2T3° + Ty© = = (111)

As was the case for the type 1 third-order plant (section 3.6) an
iterative procedure must be used to solve these equations. The equations
are best normalized by obtaining solutions for w,T; and w,T, as func-
tions of Ryw,®/KB for various values of the damping ratio (. The
sulution as c¢btained by a digital computer is plotted in figures L& and L7.

Table III also gives some of the values near the origins where the curves
are difficult to read with any accuracy.
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Figure 46.- Optimum first reversal time for a type 2
fourth-order plant.
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Normalized minimum response time, w, 7,
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Figure 47.- Minimum response time for a type 2 fourth-order plant.

Table IIT.- Optimum reversal times for a type 2 fourth-order plant

2 2
wnTa| wnly [Ro “B| ¢ JlunTa | wly [Ro Bl ¢
0.5 {2.931}0.2050 0.5 [2.355]0.0606
1.0 | 4h.724|1.504 }&1 1.0 Jh.0221 4570
1.5 | 5.89113. 76k 1.5 |5.487]1.325 | (2

2.0 |6.836|2.714
.51 2.802{ .1702
.0 | 4.512]1.209 }- 250 .5 {2.285( .oLL3
.5 | 5.66013.057 1.0 [3.986] .3690 50
1.5 |5.506(1.1165 .
.51 2.660| .1319 2.0 16.990]2.315
1.0} L.285] .9122
1.5 ] 5.475(2.369 j} S0 L5 |e.252] L0022
2.0 | 6.454 4,382 1.0 |Lk.o14| .2248
1.5 |5.656| .8066| (3+©
.5 2.569] .1024 2.0 |7.25211.746
1.0 | L.211} .7183
1.5 | 5.371|2.002 ‘5l 1.5 {5.880]| .3702
2.0 |6.381{3.812 2.0 |7.550{1.101 }5£
2.5 [9.240(2.054
.5 | 2.425] L0923
1.0 | k.o73] .6130
1.5 | 5.406]1.6816] 101
2.0 | 6.639{3.303
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As was the case for the type 1 third-order example, the data
presented in figures 46 and 47 indicate that a larger number of reversals
may be required in order to obtain the optimum response for low values
of t. This is hypothesized since the minimum response time and first
reversal time for ¢ = 0.1 is larger than for ¢ = 0.25 for certain
ranges of input step magnitude.

An asymptotic solution for large inputs is also possible for this
example in quite the same manner as was done for the type 1, third-order

problem., This solution is now considered.

3.9.1 Asymptotic solution for a type 2 fourth-order plant.- The
fourth-order plant can be visualized as shown in figure L48. From this

+8/-| x(1) K c(r) | L | elr)
—/{2; _§fi4.2;£§.+| '52

2 w
wg n

Figure 48.- Block diagram of a type 2 fourth-order plant.

diagram it can readily be seen that with x at its bounded value, ¢ will
approach a steady-state value of KB for £ > 0. This example then is
practically identical to the previous ocne, The optimum switching will

be as shown in figure 49. It thus can be seen that if we define

+5
x(7) I 7 7
=
5] ol
T

Figure 49.- Optimum motion of the plant input, x(t), for a type 2
fourth-order plant.

(Ta-T2)wy = T1* and w,(Ty-T2) = To* then the results of the previous
solution given in section 3.6.1 can be used in the asymptotic solution
for this example.

The results are valid for T, long enough so that ¢ is very close
to the steady-state value (i.e., ¢ = O0)., Combining equation (110) with
equation (111) and using the above definitions of T1* and To* after
certain manipulations gives

wnTy =j—% W + 30,%F - 2T *T* (112)
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R N
wyTy = 2T1% + Q'JET1*2 + =2 wy® - 2Ty FTL* (113)
KB

BEquations (112) and (113) are sufficiently accurate to allow the
extension of the curves of figures 46 and L7 to larger values of
Row,2/KB for ¢ < 2; T;* and To* in equations (112) and (113) are obtained
from figure 41, For ¢ > 2 one can obtain an accurate extension of the
curves by factoring the second-order equation (s2/wy®)+(2(s/w,)+1 of
the denominator of G(s) into an equation of form (sTy+1)(sTz+l). The
smaller of the two time constants is assumed zero and G(s) is approxi-
mated by G(s) = K/s2(st+l). This allows one to use the data for a
type 2 third-order system presented in figures 4k and 45.

3.10 A Type 3 Third-Order Plant

For this case use of the theorem of reference 4 and previous
arguments gives

x(t) = Blu(t) - 2u(t-Ty) + 2u(t-Tp) - u(t-Ty)]

The solution of the equations which must be satisfied in order
that E(s) be entire are

R 1/3
_ o)
T, - (m (114)
3R 1/3
_ O
Tp = < KB.> (115)

These results are plotted in figure 50.
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IV. EXAMPLES OF SATURATED CONTROL SYSTEMS

4.1 Introduction

It is the purpose of this chapter to apply the methods proposed in
chapter II to examples of control systems. The validity of the procedure
has already been shown for second-order plants, so consequently we shall
use third-order plants. In addition, the examples chosen are for two
different types of third-order plants, namely, type 1 and type 2.

For reasons of the author's familiarity with the subject, both
examples are aircraft autopilots. As can be found by appropriate linear-
ization of the rigid body equations of motion for an aircraft (ref. 16),

a rate-limited control-surface serve in a bank-angle autopilot is equiv-
alent to saturation on the input to a type 2 third-order plant. Similarly,
a rate-limited control-surface servo in a normal acceleration autopilot
provides a type 1 third-order plant. Control-surface position limiting,
which also must exist, will be neglected in this study.

For reasons of simplicity, the aerodynamics used will be identical
to those in two previous reports. The aerodynamics for the bank-angle
autopilot are the same as those of reference 5 (F-86 at a representative
flight condition). The aerodynamics for the normal acceleration auto-
pilot are the same as those of reference 8 (F-100 at a representative
flight condition).

The purpose of choosing these examples is to allow some practical
significance to be attached to the numerical results. The examples are
chosen for illustrative purposes, however, and no claims are made regard-
ing the suitability of these designs for their respective alrcraft.

L.2 A Sampled-Data Bank-Angle Autopilot (Feedback Design)®

Reference 5 showed a continuous bank-angle autopilot in which a
nonlinear error function was designed to compensate for a limit on the
control-surface velocity. It was shown there that a linear error gain
resulted in an unstable system for large step inputs. The method used
to design the nonlinear error function to give a good response for large
inputs was essentially the same as the method described in chapter II.

In this section we shall design a sampled-data bank-angle autopilot
whose linear behavior is determined by the dominant mode of the continuous
system of reference 5. The design will use oubput velocity feedback for
stabilizing purposes. In the next section we shall design an autopilot
in which the digital computer is used to obtain the stabilizing quantity.

lpeedback will hereafter be abbreviated as FB.
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These two designs will illustrate two different sampled-data systems
and the usefulness of the techniques of chapter II for analyzing both, as
well as for synthesizing nonlinear functions for both.

Digital computer— Servo Aircraft —
_R@y Y P ’ | 62
rr T
/'(7’)'+X K, | |_é$7" + m(f)yx(f)_s—o 5{(t) 27 C(f):
-7 A i - Al s 5(s+3.333)
7
Rate gyro
Kss
Free gyro
|
r(#) = input bank angle, deg
8(#) =Aileron deflection, deg
c(t) =Output bank angle, deg

Figure 51.- Block diagram of a sampled-data bank-angle autopilot;
FB design.

Consider the block diagram of the autopilot shown in figure 51. The
symbols are defined on the figure. The limiter in this case has unity
gain and a limit level of #1 which corresponds to a maximum aileron rate,

6max? of 50° per second.

This system differs from figure 1(b) since both continuous and
sampled feedbacks are used around the limiter. The continuous feedback
here is the control-surface deflection. The sampled feedbacks are the
sum of the outputs of roll-rate and roll-position gyros.

Prior to considering any nonlinear characteristics of this system,
it is necessary to establish a linear design. For this purpose we shall
design the sampled-data system to have the same dominant mode as the con-
tinuous system given in reference 5. In reference 5 the gains were chosen
in order to obtain a good transient response. This results in a transfer
function, C(s)/R(s), given by equation (116).

c(s) 1
= (116)
R(e) (1,+o.0271s)[ 2(0.74%) s + 1]

B
/= 1 A2 +
(11.04) 11.0h




T2

Equation (116) shows the dominant second-order mode characteristics
to be wy = 11.04, ¢ = 0.7hL.

The next item which must be chosen is the sampling period, T.
Experience has shown that if the sampling frequency is at least 10 times
the dominant-mode frequency, no difficulties are involved in designing
the sampled-data system. For this reason, the sampling period is chosen
as T = 0.05, which gives a sampling frequency of 20 cycles per second.

One can now transfer the dominant mode from the s plane to the =z
plane and establish positions of desired modes (in the 2z plane) of the
pulse transfer function, C(z)/R(z).

These are, after factoring the second-order equation,
z = 0.6186 * 0.23911 (117)

With reference to figure 51, one can derive the characteristic
equation of the pulse transfer function, C(z)/R(z)

L ZKl- 2-5T> <l+ C}-OES) <s(s+237.333)> <K€ +Kés>] (118)

Since the system is third order (see fig. 51), this characteristic equation
must also be third order because no poles are added by the digital computer
pulse transfer function in this example. The desired characteristic equa-

tion is obtained by expressing the desired dominate modes of equation (117)
in polynomial form and multiplying by a second first-order factor as given

in equation (119).

(l-l.237z—l+-O.M398z_2)(co4-clz—l) (119)

Now cg, ¢,, K¢, and Ky are all undetermined coefficients. To find

their values, one must carry through the process of equating equal powers

of z”1' vetween equations (118) and (119). The details are not given

here but the results are

K. = 2.158

Ke = 0.3302 (120)

c,/cqy = -0.392

Only the ratio of c;/co 1is specified here since co really affects
the gain and has no bearing on choosing the roots of the characteristic
equation.
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Reference to equation (119) shows all the roots of the characteristic
equation to be inside the unit circle in the 2z plane. If the magnitude
of Cl/CO had been greater than unity, one would find that it would be
necessary to repeat the process using a higher sampling frequency or some
other lower frequency dominant mode.

The linear design 1f now completed. We shall now use the methods of
chapter II and data of chapter III to analyze the system for step inputs.

First, with reference to figure 51, it can be seen that we are dealing
with a type 2 third-order plant; that is, the transfer function relating
the saturated quantity, x(t), to the output, c(t), is given by

c(s) _ _(50)(27) _ _ ko5
X(s) s2(s+3.333) s2(0.3s+1)

(121)

Application of rule II of chapter II shows that we can expect the
response to become mere oscillatory as the input step to the system is
increased. We do not know whether the system is unstable or not as the
limiter gain is reduced and for this purpose a loci of pole positions
as a function of limiter gain has been computed. This is shown in fig-
ure 52 where it can be seen that the system is unstable for low values
of limiter gain.

er
Unit circle”

4L
N
AS

2L Limiter gains, -~

I,I.O
1 {, (P2 2
O 2 4 6 8 10
Re z

Figure 52.- Pole position loci as a function cf the limiter gain;
FB design.
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A note should be added that one cannot use conventional root-locus
procedures to determine the loci of pole positions in the =z plane.
This is a result of the continuous feedback around the limiter of fig-
ure 51 which causes the zeros as well as the poles to shift as a function
of the limiter gain. To obtain the pole position plot it is necessary to
compute the roots of the denominator of C(z)/R(z) which is not a simple
computational process.

It is necessary to determine the size of the inputs which cause this
oscillatory performance to exist. This will be done using the switch
time analysis method explained in chapter II. If the step input magnitude
which causes poor performance is out of the range of practical interest,
then no nonlinearities are required. If, however, they are within the
range of practical interest, we shall have to design a nonlinear function.
For this example, it is probable that step inputs from 0° to 90° should
be considered as the practical range.

The optimum first reversal time and minimum response time are given
for this example in figures 44 and 45 of chapter III. To use these data,
it 1s necessary to obtain the time constants and gain for the plant which
are given in equation (121). The limit level, B, is unity as can be seen
by inspection of figure 51. The optimum first reversal time and minimum
response time can thus be determined.

The next step is to determine the actual first reversal time as a
function of the input step size, Ry. It may be noted from figure 51 that
if Ry > 1/Ke ~ 0.5° and 8(0) = &¢(0) = ¢(0) = 0, saturation will occur.
Thus, we shall only be concerned with step inputs greater than approxi-
mately 0.5°. What is desired is an expression for m(t) of figure 51
for a unit step of x(t). This expression can be derived directly from
figure 51 and is given in equation (122). The symbol, n, is an integer
which is equal to zero at the first sampling instant after the step is
applied. The time origin, t = 0, also starts at this same instant.

m(t) = KRou(t) - 8(t)~ Ka¢(nT) - Kee(nT)

~1/50 -1[ (50)(27)
KRou(t) - L gz)"Kél’ [52(s+-3.333)]

i

]

-1 _ (50)(27)
ek [53(s+3-333)”
t=nT t=nT

(122)

After putting in the values for Kg, K¢, and T, and carrying through
the inverse Laplace transforms indicated in equation (122), the result is

(0.05n)=
5

-0.166871

m(t) = 2.158Ru(t)-50t-873.92 +128.38(0.05n)-38.51+38.51e

(123)
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The relationship between t and n is as follows:
) 0<t<0.05 n-=
0.5 < t<0.1 n=21
(124)
0.1 <€t<0.15 n=2

ete.

The continuous signal of m(t) which is a result of control-surface
deflection feedback makes the first reversal time continuous rather than
staircase as was the example carried through in chapter II. TFor computing
purposes, however, it is much simpler to consider only m(0.05n) and deter-
mine the stalrcase curve relating Ry to T;. The results as will be shown
later are not particularly affected by this simplification.

‘A-310

To find R, for a particular value of n (or Tl), one sets m = -1
in equation (123) to find the right-hand side of the curve given in fig-
ure 53. The left-hand side of the curve for the n + 1 value of T, 1is
found by setting m = 1 in equation (123) and finding Ry to satisfy the

. cquation. Dotted lines are drawn between these two values of Ry in
Tigure 53. One thus proceeds "walking up the staircase," taking as high
a value of n as is required to ccver Lhe range of interes

t of Rg.

6
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§ l“l //
- —! —
ki 4q ! ] ””"(;‘,—"—’—"
\
E +— Optimum
= I 4/””” g
2 [
S 2 'y
8 [}
v
-

O

20 40 60 80 100
. Input step magnitude, A, , deg

Figure 53.- First reversal times for a sampled-data
bank-angle autopilot; FB design.
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Inspection of figure 53 shows that overshoot due to limiting can be
expected for step inputs greater than about 5°. This hypothesis is veri-
fied by the analog computer responses of the system shown in figure 54.

o Ro=40°
.g.. 80 ,/-\
S / N\
Q A\
0.). 4
G 40 /, —— ﬁ%==2()° N\
E / NG
0
R =10°
H R TG0 | N
- 1 — M
é§ 0 4 8 1.2 1.6 2.0
Time, sec

Figure 54.- Step responses of a sampled-data
bank-angle autopilot; FB design.

One item of importance which can be seen by comparing figures 53
and 54 is the accuracy with which one can compute the first overshoot
using the data of figure 53. For step inputs of L0°, 20°, and 10°, the
curves of figure 53 indicate the overshoot to be 88°, 39°, and 17°,
respectively. The overshoots shown in figure 54 are in good agreement
with these values. As was mentioned in chapter II, the first overshoot
is obtained by projecting the first reversal time from the actual curve,
for a given step input, to the optimum curve.

Perhaps, practically speaking, it is unnecessary to compute response
times for this system since its response 1s so poor one would surely want
to design a nonlinear function to improve the characteristics. To give
the reader some confidence in the method described in chapter II, however,
this computation is compared with the data measured from analcg computer
results and the minimum curve (obtained from chapter III) in figure 55.
The measured data are the time for the error to be within 10 percent of
the step input amplitude for errors less than 10° and for the error to be
less than 1° for inputs greater than 10°. The calculated curve was
obtained (for large inputs) by use of the method explained in chapter II,
with the exception that a continuous curve was faired through the middle of
the staircase curve given in figure 53. The dotted portion of the curve
was computed by taking the value of time when the envelope of the damped
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Figure 55.- Calculated, measured, and minimum response times
for the sampled-data bank-angle autopilot; FB design.

sine wave (obtained by taking the inverse of eq. (116) for a step input)
was 10 percent of the input step magnitude. Although this is a sampled-
data system, rather than a continuous system, previous work (ref. 8) has
shown that the sampled-data-system response will be very close to the
response of the continuous system from which it is derived if the sampling
frequency is high compared to the dominant mode frequency.

The calculated curve is seen to be in reasonable agreement with the
measured data.

The computation of a nonlinear compensation function follows the
method outlined in chapter IT. The first step is to obtain a staircase
approximation to the optimum first reversal curve. The approximation
used here is shown in figure 56. This gives the input as a function of
the first reversal time for use in equation (122). One then solves
equation (122) for K.e(Ty).

Kee(T1) = Ke[Ro(T1) - (T1)] = 8(T1)+ Kee(T1) + m(Ty) (125)
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In this equation m(Ty) is taken as zero and Kz is taken as a constant,
0.3302. One solves for Kge(Ti) for various values of Ti; Ry(T1) is
obtained from the staircase curve of figure 56.

6
T
%) . . ptimum
o Approximation /
l\:— ‘74
o4
E
o
Q p—
2
o 2
2
W
0 20 40 60 80 100
Input step magnitude, A,, deg
Figure 56.- Staircase approximation to the optimum first
reversal curve.
Since

€(T1) = Rg(Ta) - <(T1) (126)

the results can be plotted as a function of the error. The computed
curve 1s shown in figure 57.

For the modified system, the digital computer operations are

(1) Teke the sampled error signal and from this compute the
value of K¢(e)e given in figure 57.

(2) Subtract Kgé(nT) from the result obtained in step (1).

(3) Feed the stored result (hold circuit) to the control-
surface servo input.

(4) Go back to step (1) at the next sampling instant.
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Figure 57.~- Nonlinear function used to modify the
sampled-data bank-angle autopilot; FB design.
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The results of an analog computer simulation of these operations are
shown in figure 58. As can be recognized, the response is very well
damped, corresponding closely to the optimum as can be seen by comparing
the response times of the step responses of figure 58 with the minimum
shown in figure 55.

A note should be added that this system does not obey the limitations
imposed in chapter II since there is more than one zero in the expression
G(s) H(s). Probably because this system is dominant second order for all
values of the limiter gain, as can be seen in figure 52, we obtain good
results by using only one nonlinear function. No further consideration
of this subJject is deemed necessary here because of these good results.
This will also be the case in the example considered in the next section.

4.3 A Sampled-Data Bank-Angle Autopilot, D(z) Design

The block diagram of this example is shown in figure 59. As can be
seen by comparing the figures 59 and 51, this example differs from the
previous cne by having a more complicated digital computer pulse transfer
function which allows one to eliminate the rate-gyro feedback.

Digital computer ———

Servo ~— Aircraft —
R a.li-z-h _C2)
ror l Hold Limiter A
rin+ + l-eST| +om| +1 X (1) 50 |8 27 1clt)
-7 & 7 1 s & /, S 5(s+3.333)
00

Free gyro

r(t)= Input bank angle, deg
8(#)= Aileron deflection, deg
c(t)= Output bank angle, deg

Figure 59.- Block diagram of a sampled-data bank-angle autopilot;
D(z) design.

With this choice of D(z) and the manner of computation indicated,
one can obtain an analogy to error plus error rate which is used so
often for stabilizing continuous systems. This is shown as follows:

E(z) D(z) = E(z)[ag + aq(L- z"1)] (127)
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If one recognizes that E(z)(1-2z"')/T is a two sample approximation of
&(t), then one can say from equation (127) that

E(z) D(z) = (constant)(error) + (constant)(error rate) (128)

The various analogies such as this that exist between sampled-data
systems and continuous systems designs are usually very helpful in pro-
viding an understanding of % transform operations.

It is necessary for this example to determine the values of ag
and aj; of figure 59 which will give the desired linear characteristics.
For this purpose, the design is again obtained using the dominant mode
of the system of reference 5. The sampling frequency is also chosen to
be identical to the previous example so the desired positions of the
dominant mode in the =z plane are given by equation (117).

The mathematical procedure is quite similar to the previous example.
One could also use the method explained in references 7 and 8.

One first writes the characteristic equation as follows

1+D(z) Z 3(1_ 2_5T> <1+ ol.oes> [s(s+237-333)]$ -0 (229)

The desired characteristic equation is

(1-1.2372 1+ 0.4398272 ) (cg + c12 T+ cpz ) = O (130)

Note that we have now forced the gesired characteristic equation to be
fourth order. This is simply because D(z) has one pole and therefore
since the plant is third order, the over-all system must be fourth order.

The pulse transfer function D(z) has two undetermined coefficients
and the desired characteristic eguation has three. One can equate equal
powers of z~1 between equations (129) and (130) to solve for the unde-
termined coefficients. In this case also only the ratios of cg/c; and
co/cz have an effect on the roots of the characteristic equation and
therefore co may be chosen equal to unity. The other coefficients are

-0.600
} (131)
-0.044

Y
il

o = 1.263 cq

L. b7k Co

o
P
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One finds the roots of the second-order part of equation (130) given
by the coefficients cg, ¢;, and ¢y 1o make sure the system is stable.
These roots are

z = 0.666, -0.066 (132)

Thus, since all the poles of the pulse transfer function C(z)/R(z)
are well inside the unit circle and in well-damped regions of the =z
plane, no change in sampling frequency or dominant-mode characteristic
1s necessary.

The characteristics of this system for large step inputs remain to
be determined. Since this example has the same plant and same dominant-
mode characteristics as the previous example, one should expect a great
deal of similarity between the results.

The loci of pole positions as a function of limiter gain are shown
in figure 60. The arrows denote the direction of increasing limiter
gain. As was the case previously, these loci were computed by factoring
the denominator of the closed-loop pulse transfer function.

6r

Unit circle”

Limiter gain,
2 1.0

Rez 1.0

Figure 60.- Pole position loci as a function
of the limiter gain; D(z) design.

Figure 60 illustrates this system is unstable for low values of
limiter gain and that one should therefore expect the system response
to deteriorate with the input step magnitude. Further verification of
this fact is demonstrated in the first reversal time curve® of figure 61.
Here it can be seen that the response should start to deteriorate with

2These data are computed in a manner so similar to the previous one
that no explanation is considered necessary.
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step input magnitudes greater than about 13. This hypothesis is confirmed
by the step responses obtained from an analog computer which are presented
in figure 62.

As was the case for the previous example, it may be noted that there
is a good correspondence between the first overshoot determined from
figure 61 and the results given in figure 62.

This particular design is more stable than the previous example.
The increase in stability can be noted by comparing figures 61 and 53 as
well as 62 and 54. These data show that a larger step is permitted in
the present example than in the previous example before the output
response starts to deteriorate. The reason for this increase in stabil-
ity is partially explained by the fact that ay for this system is
smaller than K¢ for the previous system. It may be noted that these
parameters are the "steady state" gain of the digital computer. A
second possibility could be associated with the fact that one zero of
G(z) D(z) is "fixed" in the =z ©plane as the limiter gain is varied for
this example; whereas in the previous example, all the zeros of Z[GH(s)]
vary as the limiter gain is varied. It is beyond the scope of this inves-
tigation to consider this topic although the general subject of sampled-
data systems designed by the dominant mode concept probably requires
further study.

The calculated and measured total response times for the present
example, along with the minimum are shown in figure 63. The procedure
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Figure 63.- Calculated, measured, and minimum response times for the
sampled-data bank-angle autopilot; D(z) design.

0TE-v



85

for calculating the response time was the same as explained for the
previous example. The measured response time which was obtained from
computer results was defined in the same manner as for the previous
example, that is, the time to within 10 percent of the input step magni-
tude for inputs less than 10° and time to within 1° for inputs greater
than 10°. The results between the measured values and computed values
show fair agreement. For large inputs, however, the response time is
very long. We shall, therefore, design a nonlinear function to com-
pensate for this phenomenon which will provide near optimum response.

To design the nonlinear function, one proceeds in exactly the same
manner as was described previously. The computations and details will
not be given here since they are straightforward. For this case, it was
chosen to make ay a function of error. The computed nonlinear function
ac(e)e is shown in figure 6k4.

40

a, (€) €
©

-80 -40 O 40 80
e(t), deg

Figure 64.- Nonlinear function used to modify the
sampled-data bank-angle autopilot; D(z) design.

Figure 65 shows the step responses of the system when the non-
linearity of figure 64 is introduced in place of the constant, ag. A
comparison of figures 62 and 65 shows that the response has been improved
tremendously.
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Figure 65.- Step responses of the modified sampled-data
bank-angle autopilot; D(z) design.

L4 A Continuous Normal Acceleration Autopilot

The two previous examples considered type 2 third-order plants.
This example will be for a type 1 third-order plant and will be a con-
tinuous system rather than a sampled-data system. The most significant
feature of this particular example, as will be shown, is that it is
necessary to use a more complicated nonlinear function to obtain satis-
factory performance for large step inputs. This allows some verification
of the usefulness of some of the ideas presented in section 2.7.

The block diagram of the proposed system and definition of symbols
is shown in figure 66. A word of explanation of the figure is necessary.
First, the quantity w(t) is fictitious and has been added for the sole
purpose of providing a plant transfer function W(s) which is one of
those given in chapter II. In other words, the design will be to provide
good step response between r(t) and w(t) and we will take whatever c(t)
we get. Because of the very small second- and first-order coefficients
of s 1in the transfer function C(s)/W(s), however, c(t) will be fairly
close to w(t). Second, the input is multiplied by a gain factor K
in order to give a steady-state gain of the system equal to unity. This
is necessary since an integration in the outer loop does not exist in
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Figure 66.- Block diagram of a normal acceleration autopilot.

this system. Third, the 1limit level is #0.3. This gives a maximum rate
of change of elevator deflection of #15° per sccond. Fourth, the normal
accelerometer is assumed to have a bias built into it such that its out-
put 1s zero in steady level flight. From this standpoint c(t) is the
change in normal acceleration from level flight conditions or, in other
words, the aircraft is assumed to be in a trim, level flight condition
at the instant steps of r(t) are applied.

It will be assumed that the purpose of the normal acceleration
autopilot is to increase the natural frequency and damping of the basic
alrframe. It will also be assumed that the desired natural frequency
and damping factor of the dominant second-order mode of the transfer
function C(s)/R(s) is wp = 2x, § = 0.70. With these factors in mind,

we can now design the system for the linear region of operation determlnlng

the gain constants Ki, K;, and Kq

The closed-loop transfer function relating C(s)/R(s) is

Ky C(s)/¥(s)
c(s) 1+ Kyla(s)/¥(s)]
R(s) £ c(s)/¥(s) (133)

PR TR Ta(e)/x(o)]

The transfer functions shown in equation (133) are given in figure 66
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The desired transfer function relating C(s)/R(s) is

- 2 -
C(s) _ -0.0121s® - 0.0079s + 1 (134)

R(s) [(é% ) + %z% s + l](TS +1)

Note that an unknown first-order factor has been added to the denominator
of equation (134) since we are dealing with a third-order control system.
Thus, to determine the unknown coefficlents Kj, Kq, and T, one equates
coefficients of equal powers of s Dbetween the denominators of equa-
tions (133) and (134). The coefficient X; is then determined by forcing
the gain of C(s)/R(s) to be unity in the steady state.

The results after equating the denominators and solving for the
coefficients are

K; = -4.188
Kg = -0.328
(135)
T = 0.03028
K, = 1.66 /

Thus, a linear design has been established. Let us now consider the
behavior of the system for large step inputs.

The root loci for limiter gain variations from O to 1 are shown in
figure 67. Note the change in scale made between -5 and -6 on the
abscissa. This is a type 1 plant; however, the locus of the complex
pole position indicates that we have designed a system which is almost
unstable for a certain range of limiter gain. Furthermore, note that
the complex pole is about the same distance away from the origin as the
real pole for gain ranges from about 0.1 to 0.25. Since this complex
pole is very lightly damped, we should expect the step response for cer-
tain ranges of input magnitude to have a lightly damped oscillatory
characteristic. The switch time method will be used to determine this
range.

As was mentioned previously, no curves of optimum reversal time have
been derived for the plant given by the transfer function C(s)/X(s) of
figure 66. We have, however, normalized curves given for -W(s)/X(s). We
shall therefore use the method for w(t) rather than c(t). The two zeros
of the transfer function C(s)/W(s) are sufficiently far from the origin
in the s plane compared with the poles of W(s)/X(s) that they should
not have too large an influence on the system response.
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Figure 67.- Root loci of the normal acceleration autopilot
as a function of the limiter gain.

For the plant given by -W(s)/X(s), reference to figure 66 shows the
following:

wy = 2.66
t ~0.25 (136)
KB = (0.531)(50)(0.3) = 7.965

We are principally interested in the range of Rp up to a maximum
of about 3g; therefore, the maximum value of the abscissa of figure 37,
where the normalized first reversal time is given, is

(Rogaz)vn _ (3)(2.66)
B = 7965 =z 1.0 7 (137)

Therefore, for reasons of accuracy it is better to use the data given in
table II. These data give three points of the optimum first reversal
curve as follows
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Ry = 0.4417g T, = 0.188 sec
Ro = 1.995¢ , Ty = 0.376 sec (138)
Ry, = k.10g T, = 0.564 sec

We now desire to determine the actual first reversal curve. As has
been the case previously, we must determine m(t) of figure 66 for a step
of r(t). As can be noted from figure 66, if the magnitude of Ry is
greater than (0.3/K;K;) = 0.043g, then x(t) will be saturated. We are
only interested in values of Rp greater than this magnitude. With
reference to figure 66

m(t) = RoKiKu(t) - Kye(t) - Kqa(t) - o(t) (139)

Since Kj is negative (see eq. (135)), m(Ty) is equal to -0.3, for
R, positive. Thus, for large step magnitudes, Ro > 0.043,
]’ (140)

The value of m(T1) of equation (140) is taken equal to zero. (See
footnote 11, chapter IT.

-0.3 C(s)
s X(s)

m(T1) = ReKK; - L0 [ Ky +

>

The gquantity (-0.3/s) of equation (140) is the Laplace transform of
a negative step of x(t) of magnitude equal to the limit level. The nega-
tive sign must be taken since Kj; 1is negatlve and we are assuming Rg
is positive. The transfer functions s)/X(s), Q(s)/X(s), and A(s )/X(s
can be determined with reference to figure 66. The coefflClents Ky, Ky,
and Ky are given by equation (135).

One can thus carry through the mathematical operations indicated
in equation (140) and, by assuming various values of T, solve for the
values of Ry which satisfy the equation.3

The results, after carrying through the mathematical operations
indicated in equation (140), are compared to the optimum given by equa-
tion (138) in figure 68. As can be secen from the figure, the actual
curve crosses the optimum for inputs greater than approximately 1.0g.
Thus, one can assume that the response will deteriorate if the input
step magnitudes are greater than this value. This hypothesis is con-
firmed by the step responses of the simulated system given in figure 69.

31t should be vointed out here that for many of these computations,
one can make use of the analog computer. For the present case, for
example, one could simply simulate the system of figure 66 and put in
steps and measure T; as a function of the input step magnitude.
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Figure 69.- Step responses of the normal acceleration autopilot.
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A note should be added that we have analyzed the system for w(t)
not c¢(t). The small negative part of the response, at the beginning
of the transient, is due to the transfer function relating c(s)/M(s).
The small overshoot for a step of 1.0g magnitude is perhaps a result of
this same transfer function, although it more probably is due to the
fact that the system has some transition time in going from one limit
to the other. Thus, we are really using figure 68 for approximate behav-
ior and the results given by figure 69 show that our original assumption
of neglecting the zeros in the transfer function, c(s)/X(s), is accurate
encugh for engineering purposes.

We shall not compute the response time of this system and compare
it to the actual since we already know that some form of nonlinearity
should be designed. We shall now consider this subject.

Before designing a nonlinear function, one must first consider the
possibilities that exist. With reference to figure 66, we see at least
two possibilities4 where a function of a single variable could be used:

(1) Meke K; a function of Kyr(t) - c(t)
(2) Meke Ky a function of g

Neither one of these possibilities requires a multiplier since, for the
first possibility, the output of the box labeled K; would simply be a
function of its input. This is true also for the second case. The first
possibility must be ruled out, however, since Kir(t) - c(t) is not zero
if r(t) has a constant value. This means that if K; were made to
decrease as a function of Kir(t) - c(t), one would have a system which
did not have unity gain in the steady state for constant inputs. Simi-
larly, Kg, affects the steady-state gain, however, in a much smaller
manner as can be recognized by equation (141).

-O . 531K1
c(s) 1 - (0.531)(2.65)Kq
i =K 141
&' R(s) * 0.531K; (i)

T I T (053 (2.6)K

If K, is doubled from its normal value for example (see eq. (135)), the
steady-state gain reduces from unity to 0.89, whereas, if K; 1is reduced
to half its normal value, the gain changes from unity to 0.72. Thus,
from these standpoints, a change in Kq is more desirable. Furthermore,
the steady-state value of g (see fig. 66) is much smaller than its

4A block diagram modification would allow at least one other
possibility which is described in the footnote 5, chapter IV.

OTE-V
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transient value which means that a nonlinear function will have no effect
on the steady-state gain if q 1is small enough, in the steady state, to
be in the linear range (of the nonlinear function) for the practical
range of input step magnitudes (i.e., O to 3g). With reference to fig-
ure 66, if c(t) is constant at 3g magnitude, q will be 3x2.65 = 7.95°
per second.

To determine the desired nonlinear function, we proceed in the same
manner as described previously. First, solve equation (139) for qu(t)
for t = Tl

Kqa(Ta) = £la(T1)] = Ro(T1)K Ky - m(Ty) - Kye(T1) - 5(T1) (1k2)

Since Rg (T1) will be chosen to be the optimum given in figure 68 and all
the other quantities are known at T; (since x(t) = -0.3u(t)), one can
solve equation (142) for f(q). The value of m(T:1) will be taken equal
to zero as was done previously. Since
)]‘ (143)
)

s -1 ()3

we can compute and plot q(Ti) versus £iq(T:)]. The result is shown in
figure 70. It can be seen that the nonlinear function has a straight
line slope until q = 7° per second. Since the slope is not signifi-
cantly different for a slightly higher value of ¢, we can say that
there will be only a small change in steady-state gain for step inputs
as high as 3g where the steady-state value of q 1is only T7.95° per
second, as was previously mentioned.

20 —

-f(q) //’74/////

P
-20 //

-40 -20 0 20 40
g, deg/sec

Figure 70.- Nonlinear function used to modify the
normal acceleration autopilot.
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The step responses of the normal acceleration autopilot, when the
nonlinear function was introduced, are shown in figure 7l. It can be
noted that the system response has not been improved tremendously. Of
importance, however, note that the first overshoot is very small. This
is simply because we are forcing the first reversal time to be correct,
and this should result in very small or zero first overshoot as was
mentioned in chapter IT.
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Figure 71.- Step responses of the modified normal
acceleration autopilot.

This example offers an opportunity to use some of the ideas suggested
in section 2.7 to explain the reasons for the poor responses of figure TL
as well as to do something about them, that is, determine different non-
linear functions which will give good step responses. First, we shall
give a root-locus argument that shows why poor responses can exist in
this system. Then we will consider what can be done about it.

One first writes the expression for the characteristic equation of
c(s)/R(s) with respect to limiter gain, K. This is
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(0.1413+40.00643K; ) s® + (0.187-2.26TKg+0.00419K;)s + (1-0.531K;-1.407Kq)
s2 0.498
s [(2.66)2 + 58 s + l]
(14k)

Notice that the numerator is second order. Thus, there are two zeros

in the expression G(s) H(s) and, according to the arguments given in
chapter II, one should not necessarily expect a single nonlinear function
to be sufficient.

1 + 50K,

Let us plot the loci of zerc positions as a function of K in the
range given from the slope changes of figure 70 (-0.56 = K4 < -0.328).
The loci along with the complex pole loci for a constant %q = -0.328
are shown in figure 72. The coefficient K; is assumed constant at

-8
o
./w
4
2
Zero—-
Kg=-0.6
L ] 1 1

-10 -8 -6 -4 -2 0

o}

Figure 72.- Loci of zero positions for variable Kq and locus of
complex pole position for Ky = -0.328.

the value given in equation (135). This shift in zero position as a
function of ¢ does not appear to be desirable. The natural frequency
of the zeros stays nearly constant. With experience one can visualize
how the complex pole position loci (as a function of limiter gain) would
look for each zero position along the zero locus. The conclusion one
reaches is that the position of the complex pole loci for low values of
limiter gain, say 0.25 to 0.1, will probably always be in a very lightly
damped region of the s plane. These arguments could perhaps be made
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less nebulous by a contour plot of pole position for constant values of
limiter gain for the zeros shifting in the manner indicated. This has
not been done here, since it appears quite reasonable from the above
consideration that the zero shift is not desirable and gives a reason-
able explanation as to why the step responses of figure Tl were not
well damped for large inputs, even though the first reversal time was
made to be near optimum.

Consideration will now be given to two more complicated (from the
practical standpoint) nonlinear compensation schemes. The first will
be to make K; & nonlinear function of the error e(t) (see fig. 66).
This function is more complicated, since a multiplier is required.®
The second will be to make both K; and Kq nonlinear functions of
error, e(t), in such a manner that the natural frequency of the zeros
reduces while the damping ratio stays constant.

Consider the problem of making Xj; a nonlinear function of error.
We would like to know how the zeros shift as a function of Kj if Kq
is assumed constant (Kq = -0.328). This shift is readily computed from
the numerator of the second part of equation (144). The results of these
computations are shown in figure 73, along with the complex pole locus
for variable limiter gain but a constant K; (K; = -4.188). Comparing
figures 72 and 73, one can see that this shift in zero position is more
desirable than the previous case. The natural frequency of the zeros
does decrease somewhat and damping increases so one is demanding less
of the system for large values of the error.

The method of computing the desired nonlinear function of error,
KZ<€): is done by making the first reversal time optimum. One rewrites
equation (142), this time solved for K

K, (¢) = 8(T1)+Kqa(T1) (145)
Ro(T1)K3-c(Ty)

The value of m(T,) has been taken equal to zero. Since

SA simple block diagram transformation,
which was not recognized until the investi- (/(_4)/(
gation was completed, would have eliminated ' }
the need for a multiplier. This change is f(f)
shown in the accompanying sketch. The |
upper box would be made a constant gain and € P +
the lower box made a nonlinear function of |
the error. The results of using this
system would undoubtedly be the same as c(?)
those of the first case considered here.
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Figure 73.- Locus of zero position for variable K; and locus of
complex pole position for K; = -4.188.

€(T1) = Ro(T1) - c(T1) (1k6)

one can compute Kj(e€) and e, the desired nonlinear function. The results
of these computations are shown in figure 4.

The step responses for the modified system when the nonlinear
function Kz(e) was introduced are shown in figure 75. The results show
an improvement as the shift in zero positions of figure T3 indicates
should be the case. As a matter of fact, the improvement is significant
enough so that nco further designs need be made. There are probably more
complex examples, however, when at least two nonlinear functions are
required.

To demonstrate the method of computing two nonlinear functions, we
consider a case where both X; and Kq are made nonlinear functions of
the error. One should perhaps note that Kq could be made a function
of q; however, we will not study this example here, although the method
of computing this function is practically the same as for this example.

For this example, we shall force the damping ratio of the zeros to
remain constant at a value of 0.703 which 1s determined from the values
of Kq and K; given in equation (135). The equation relating the
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Figure 75.- Step responses of the modified normal acceleration
autopilct.
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damping ratio, {,, and natural frequency, wph,, of the zeros to Kq
. and K; 1is given in equations (147) and (148).
l-O.53lKl-l.hO7Kq
= 1
“no V/<3.1413+o.oo6u3K1 (L+7)
1 0.187-2.26TK4+0.00419K
=t Co = 5 2 L (148)
ﬁ, N (1-0.531K; -1. 40TKg) (0. 1413+0.006L3K; )
<

Since ¢, of equation (148) is a constant, {, = 0.703, we can obtain
an equation relating Ky and K; which provides this desired value

of §,. One can thus put ¢, = 0.703 in equation (148) and solve for
the relationship between KCl and X;. The resultant quadratic equation
is

- qu + (-0.0885-0.000218Ky)Kq + (-0.04755+0.02669K;+0.00132K; %) = O
(

149)

Note that both Kq and K; must be negative, since the plant has negative
gain (see fig. 66). One can assume values of K; varying from nominal
value K; = -%.188 to lower values, say K; = -1, and solve for Kq-

The results of these computations are plotted in figure 76.

We thus know the desired relationship between Kq and K; which
makes the zeros shift with a constant damping ratio. What remains to
be determined is how they should shift as a function of the error. This
can be accomplished quite readily by forcing them to chift so that the
first reversal time is maintained optimum. The method by which this is
accomplished is very similar to the one used previously. First, one
rewrites equation (142) in the following form:

K1 (€)[Ro(T1)X1 = c(T1)] - Kg(e)a(T1) = m(T1) + 8(T1) (150)

The value of m(T;) is taken equal to zero as has been done previously.
For each value of T, this equation has the following form

. K;(e)a - Kq(e)b =c (151)
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Figure 76.- Kq versus K; for a constant damping ratio of the
normal acceleration autopilot.

where a, b, and ¢ are constants. Equation (151) is a linear equation

in Kj(e€) and Kq(€). It thus can be plotted as a straight line in fig-

ure 76. The intersection point between this straight line and the curve
of figure 76 is the desired value of K;(e) and Kq(e).

By choosing a number of values of T, in equation (150), one can
obtain the results plotted in figure T7. Note that both functions
decrease as the magnitude of the error increases.

The step responses of the modified system with these nonlinearities
introduced are shown in figure 78. As can be noted, there is a very
significant improvement in this system response over the example where
Kq was made a function of q. However, the response is very close to

the previous example except that a slight decrease in the overshoot for
a 3g step was noted.

The last two examples have demonstrated that the ideas presented in
section 2.7 have a real significance for complex problems. Combining

root-locus arguments to obtain the desired zero locus (as a nonlinear »

function of error, for example), and the first reversal time for deter-
mining the nonlinear functions, appears to have significance for
application to high-order control systems.

NTC-vw
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V. CONCLUSIONS

5.1 Summary of Results

The aim of this investigation was to develop methods for the treat-
ment of saturation (or limiting) in feedback control systems. It has
been found that if one treats a limiter as an equivalent gain (the gain
constant decreases as the magnitude of the input to the limiter increases),
then one can draw the root loci as a function of the equivalent limiter
gain. These root loci, as has been shown by Kalman (ref. 2), give a
gualitative picture of the change in performance as the input to the feed-
back control system is increased. In particular, it was shown in chapter
II, by the use of this root-locus method, that the fundamental character-
istics of a saturated control system, for large inputs, depends upon the
number of integrations of the plant, that is, the number of poles at
s = 0 of the plant transfer function. Thus, the classification of plants
according to type, that is, the number of poles at the origin in the s
rlane, appears to offer a good way of remembering these fundamental charac-
teristics. In summary, these characteristics are

(1) Type 1 plants are velocity limited and, therefore, the
response will become more sluggish as the size of the input is increased.

(2) Type 2 plants are acceleration limited, and their response
will become oscillatory as the size of the step input is increased.

(3) Type 3 plants always give control systems which are unstable
for low values of equivalent limiter gain, and, therefore, the feedback
control system will become unstable for large step inputs.

Of course there are the exceptions to (1) and (2) when the linearly
designed feedback control system is unstable or nearly so as the limiter
gain is decreased as was shown in the corollaries of the rules presented
in chapter II. These exceptions can result in stable limit cycles for
type 1 or type 2 plants but unstable limit cycles for type 2 only. The
system can be shocked into these limit cycles by large input disturbances.

The most important contribution of this investigation is the appli-
cation of the switch time method for analysis and synthesis purposes.
Although the author and Triplett in reference 5 explored some of the
potentialities of the method, its derivation and usefulness were not well
understood at that time. One advantage of this method is its simplicity
of concept; that is, the simple fact that if the first reversal time is
longer than the optimum relay solution, then the step response must over-
shoot. This simplicity of concept has allowed the use of the method for
systems of any order, provided of course that the linear design meets the
restrictions imposed in chapter II. The examples shown in chapter IV,
where third-order sampled data and continuous autopilots were analysed
and synthesized, demonstrate the usefulness of this method.
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The switch time method as used for synthesizing nonlinear functions
to improve the step response is to the author's knowledge one of the few
techniques available for this purpose, In application, it actually
provides a switching line which should be on the optimum relay switching
surface of the multidimensional (dependent on the order of the plant)
phase space, The advantage of the technique, however, is that one does
not need to know this switching surface, which for high-order systems is
very difficult to determine, in order to apply the technique.

Another advantage of the switch time method is that one works directly
with the parameters of the feedback control system and not with parameters
of some transformation where, because of the mathematics of the inverse
transformation, the determination of the actual system's response, becomes
very difficult.

The fact that the Laplace transform of the error time signal must
be an entire function, if the error is to be reduced to zero in a finite
time, is a valuable technique for determining the optimum response. The
disadvantage of the method, however, is that one must, by a priori infor-
mation, select the general form of the input to the plant. As was shown
in chapter III, this selection is aided considerably by simple block
diagram transformations and physical reasoning. A partial check of the
choice of the general form of the input is obtained if sufficient equa-
tions exist to force the error transform to be an entire function.

One of the interesting by-products of this investigation is the fact
that one must not force the limited variable to be at 1ts maximum values
throughout the transient if one desires the minimum response time for a
plant which has zeros in the left half plane. This is a result of the
fact that some of the states can be changing in a controlled manner while
the error and its derivatives remain zero. This allows one to design a
system which is much faster (in some cases) than the system which
essentially brings all the states to rest after the transient.

5.2 Suggestions for Further Research

The concept of considering root loci as actually shifting as a
function of some parameter which was the equivalent limiter gain in this
investigation appears to offer one way of analyzing the behavior of
certain nonlinear systems. In particular, if one also forces the zeros
to shift as a function of some other parameter (error for example), one
can obtain a qualitative reason for synthesizing nonlinear systems to
behave in some desired fashion. It would, therefore, be desirable to
establish theoretically when this type of treatment is permissible. Kalman
(ref. 2) made a start in this direction, and further work would be very
desirable.
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The technique of using the entire function to determine optimum
switch times for bang-bang operation (chapter III) may have some use-
fulness for those interested in determining optimum switching surfaces
of high-order plants., This technique can be used, since, regardless of
the position in the phase space, the error transform must be an entire
funetion if one has the optimum system.

With regard to the general subject of treatment of high-order systems
by phase space techniques it is the opinion of the author that from prac-
tical considerations one need not consider the space as infinite in
dimension for all the variables, This is hypothesized, since for a large
number of systems it is the plant input which drives the system to the
positions in the phase space; therefore, if the plant is stable and if
the plant input is bounded, certain dimensions of the phase space are
bounded, For example, for type 1 plants only one dimension is infinite,
since only one integration exists. For type 2 plants only twoc dimensions
are infinite, etc., Thus, if this opinion 1s accepted, it means that the
optimum switching surface i1s bounded in certain dimensions of the phase
space, The fact that it is bounded may, perhaps, offer some simplification
in the determination of the optimum switching surface for certain complex
plants. These arguments go along with the method proposed by Kalman
(ref. 10) for synthesizing nonlinear functions for near optimum response.
The general subject of "optimum systems," however, needs much further
investigation for high-order systems.

Some further areas of investigation which would make the switch time
method of greater use are

(1) Determine the optimum first reversal times and minimum response
time for more plants in which both zeros and unstable poles are included
in the plant transfer function.

(2) Determine, for high-order complex plants, how one should shift
the zeros in order to give near optimum response for large inputs. One
example has been glven in chapter IV; however, further study appears
desirable.

(3) Determine how the nonlinear system designed by the switch
time method behaves for inputs other than steps. Some unreported
simulation studies have shown that such systems have subharmonic
oscillations when driven by large sine wave inputs but that the system
cannot be shocked into an unstable mode; however, more experimental and
theoretical work would be desirable,

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 7, 1959
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